Skip to main content

Roles and Mechanisms of TGR5 in the Modulation of CD4+ T Cell Functions in Myocardial Infarction

Abstract

Bile acid receptor TGR5 has been proved to play protective roles in the process of myocardial infarction (MI). Recently, we found spleen weight of Tgr5+/+ mice was increased at 7-day post-MI but not in Tgr5−/− mice. Since the spleen is one of the main resources of immune and inflammatory cells post-MI, we conducted flow cytometry analysis of multiple immune cells in the heart post-MI. It showed the recruitment of CD4+ T cells and CD8+ T cells was continuously more in the heart of Tgr5−/− mice post-MI until 7 days after MI. Furthermore, CD4-specific TGR5 depletion mice exhibited aggravated ischemic injury. The mRNA expressions of the markers of Th1 and Treg were upregulated in the heart of Tgr5−/− mice at 7-day post-MI. These results suggested TGR5 modulates CD4+ T cell functions and subsets distribution in the heart, and plays protective roles in myocardial infarction.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bansal, S. S., Ismahil, M. A., Goel, M., Zhou, G., Rokosh, G., Hamid, T., & Prabhu, S. D. (2019). Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation, 139(2), 206–221. https://doi.org/10.1161/CIRCULATIONAHA.118.036065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhang, S., Bories, G., Lantz, C., Emmons, R., Becker, A., Liu, E., Abecassis, M. M., Yvan-Charvet, L., & Thorp, E. B. (2019). Immunometabolism of phagocytes and relationships to cardiac repair. Frontiers in Cardiovascular Medicine, 6, 42. https://doi.org/10.3389/fcvm.2019.00042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Weil, B. R., & Neelamegham, S. (2019). Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling: Pathophysiology and novel treatments. Frontiers in Immunology, 10, 300. https://doi.org/10.3389/fimmu.2019.00300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Wang, J., Zhang, J., Lin, X., Wang, Y., Wu, X., Yang, F., Gao, W., Zhang, Y., Sun, J., Jiang, C., & Xu, M. (2021). DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. Journal of Molecular and Cellular Cardiology, 151, 3–14. https://doi.org/10.1016/j.yjmcc.2020.10.014

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Perino, A., Pols, T. W., Nomura, M., Stein, S., Pellicciari, R., & Schoonjans, K. (2014). TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. The Journal of Clinical Investigation, 124(12), 5424–5436. https://doi.org/10.1172/JCI76289

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hogenauer, K., Arista, L., Schmiedeberg, N., Werner, G., Jaksche, H., Bouhelal, R., Nguyen, D. G., Bhat, B. G., Raad, L., Rauld, C., & Carballido, J. M. (2014). G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. Journal of Medicinal Chemistry, 57(24), 10343–10354. https://doi.org/10.1021/jm501052c

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Biagioli, M., Carino, A., Cipriani, S., Francisci, D., Marchiano, S., Scarpelli, P., Sorcini, D., Zampella, A., & Fiorucci, S. (2017). The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. The Journal of Immunology, 199(2), 718–733. https://doi.org/10.4049/jimmunol.1700183

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Pols, T. W., Nomura, M., Harach, T., Lo Sasso, G., Oosterveer, M. H., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2011). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metabolism, 14(6), 747–57. https://doi.org/10.1016/j.cmet.2011.11.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Guo, C., Xie, S., Chi, Z., Zhang, J., Liu, Y., Zhang, L., Zheng, M., Zhang, X., Xia, D., Ke, Y., Lu, L., & Wang, D. (2016). Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity, 45(4), 802–816. https://doi.org/10.1016/j.immuni.2016.09.008

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Gao, E., Lei, Y. H., Shang, X., Huang, Z. M., Zuo, L., Boucher, M., Fan, Q., Chuprun, J. K., Ma, X. L., & Koch, W. J. (2010). A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107(12), 1445–1453. https://doi.org/10.1161/CIRCRESAHA.110.223925

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Libby, P., Nahrendorf, M., & Swirski, F. K. (2016). Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: An expanded “cardiovascular continuum.” Journal of the American College of Cardiology, 67(9), 1091–1103. https://doi.org/10.1016/j.jacc.2015.12.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yan, X., Anzai, A., Katsumata, Y., Matsuhashi, T., Ito, K., Endo, J., Yamamoto, T., Takeshima, A., Shinmura, K., Shen, W., Fukuda, K., & Sano, M. (2013). Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 62, 24–35. https://doi.org/10.1016/j.yjmcc.2013.04.023

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bostan, M. M., Statescu, C., Anghel, L., Serban, I. L., Cojocaru, E., & Sascau, R. (2020). Post-myocardial infarction ventricular remodeling biomarkers-the key link between pathophysiology and clinic. Biomolecules, 10(11). https://doi.org/10.3390/biom10111587.

  14. 14.

    Vieira, J. M., Norman, S., Villa Del Campo, C., Cahill, T. J., Barnette, D. N., Gunadasa-Rohling, M., Johnson, L. A., Greaves, D. R., Carr, C. A., Jackson, D. G., & Riley, P. R. (2018). The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. The Journal of Clinical Investigation, 128(8), 3402–3412. https://doi.org/10.1172/JCI97192

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews. Cardiology, 11(5), 255–265. https://doi.org/10.1038/nrcardio.2014.28

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Heusch, G. (2019). The spleen in myocardial infarction. Circulation Research, 124(1), 26–28. https://doi.org/10.1161/CIRCRESAHA.118.314331

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Guo, C., Chen, W. D., & Wang, Y. D. (2016). TGR5, not only a metabolic regulator. Frontiers in Physiology, 7, 646. https://doi.org/10.3389/fphys.2016.00646

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chang, S., Kim, Y. H., Kim, Y. J., Kim, Y. W., Moon, S., Lee, Y. Y., Jung, J. S., Kim, Y., Jung, H. E., Kim, T. J., Cheong, T. C., Moon, H. J., Cho, J. A., Kim, H. R., Han, D., Na, Y., Seok, S. H., Cho, N. H., Lee, H. C., … Seong, S. Y. (2018). Taurodeoxycholate increases the number of myeloid-derived suppressor cells that ameliorate sepsis in mice. Frontiers in Immunology, 9, 1984. https://doi.org/10.3389/fimmu.2018.01984

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Alemi, F., Kwon, E., Poole, D. P., Lieu, T., Lyo, V., Cattaruzza, F., Cevikbas, F., Steinhoff, M., Nassini, R., Materazzi, S., Guerrero-Alba, R., Valdez-Morales, E., Cottrell, G. S., Schoonjans, K., Geppetti, P., Vanner, S. J., Bunnett, N. W., & Corvera, C. U. (2013). The TGR5 receptor mediates bile acid-induced itch and analgesia. The Journal of Clinical Investigation, 123(4), 1513–1530. https://doi.org/10.1172/JCI64551

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Merlen, G., Bidault-Jourdainne, V., Kahale, N., Glenisson, M., Ursic-Bedoya, J., Doignon, I., Garcin, I., Humbert, L., Rainteau, D., & Tordjmann, T. (2020). Hepatoprotective impact of the bile acid receptor TGR5. Liver International, 40(5), 1005–1015. https://doi.org/10.1111/liv.14427

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Sleiman, M. B., Gioiello, A., Pellicciari, R., & Schoonjans, K. (2020). Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.05.067

    Article  PubMed  Google Scholar 

  23. 23.

    Lewis, N. D., Patnaude, L. A., Pelletier, J., Souza, D. J., Lukas, S. M., King, F. J., Hill, J. D., Stefanopoulos, D. E., Ryan, K., Desai, S., Skow, D., Kauschke, S. G., Broermann, A., Kuzmich, D., Harcken, C., Hickey, E. R., & Modis, L. K. (2014). A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo. PLoS One, 9(6), e100883. https://doi.org/10.1371/journal.pone.0100883

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cesta, M. F. (2006). Normal structure, function, and histology of the spleen. Toxicologic Pathology, 34(5), 455–465. https://doi.org/10.1080/01926230600867743

    Article  PubMed  Google Scholar 

  25. 25.

    Methe, H., Brunner, S., Wiegand, D., Nabauer, M., Koglin, J., & Edelman, E. R. (2005). Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. Journal of the American College of Cardiology, 45(12), 1939–1945. https://doi.org/10.1016/j.jacc.2005.03.040

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Tang, T. T., Zhu, Y. C., Dong, N. G., Zhang, S., Cai, J., Zhang, L. X., Han, Y., Xia, N., Nie, S. F., Zhang, M., Lv, B. J., Jiao, J., Yang, X. P., Hu, Y., Liao, Y. H., & Cheng, X. (2019). Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell receptor sequencing and phenotypic characterization. European Heart Journal, 40(48), 3924–3933. https://doi.org/10.1093/eurheartj/ehz516

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bansal, S. S., Ismahil, M. A., Goel, M., Patel, B., Hamid, T., Rokosh, G., & Prabhu, S. D. (2017). Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circulation. Heart Failure, 10(3), e003688. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003688

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Weirather, J., Hofmann, U. D., Beyersdorf, N., Ramos, G. C., Vogel, B., Frey, A., Ertl, G., Kerkau, T., & Frantz, S. (2014). Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circulation Research, 115(1), 55–67. https://doi.org/10.1161/CIRCRESAHA.115.303895

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Matsumoto, K., Ogawa, M., Suzuki, J., Hirata, Y., Nagai, R., & Isobe, M. (2011). Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. International Heart Journal, 52(6), 382–387. https://doi.org/10.1536/ihj.52.382

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hofmann, U., & Frantz, S. (2016). Role of T-cells in myocardial infarction. European Heart Journal, 37(11), 873–879. https://doi.org/10.1093/eurheartj/ehv639

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Pan, W., Zhu, Y., Meng, X., Zhang, C., Yang, Y., & Bei, Y. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36. https://doi.org/10.1007/s12265-018-9836-7

    Article  PubMed  Google Scholar 

  32. 32.

    Curato, C., Slavic, S., Dong, J., Skorska, A., Altarche-Xifro, W., Miteva, K., Kaschina, E., Thiel, A., Imboden, H., Wang, J., Steckelings, U., Steinhoff, G., Unger, T., & Li, J. (2010). Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. The Journal of Immunology, 185(10), 6286–6293. https://doi.org/10.4049/jimmunol.0903681

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ilatovskaya, D. V., Pitts, C., Clayton, J., Domondon, M., Troncoso, M., Pippin, S., & DeLeon-Pennell, K. Y. (2019). CD8(+) T-cells negatively regulate inflammation post-myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 317(3), H581–H596. https://doi.org/10.1152/ajpheart.00112.2019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Varda-Bloom, N., Leor, J., Ohad, D. G., Hasin, Y., Amar, M., Fixler, R., Battler, A., Eldar, M., & Hasin, D. (2000). Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. Journal of Molecular and Cellular Cardiology, 32(12), 2141–2149. https://doi.org/10.1006/jmcc.2000.1261

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Professor Changtao Jiang, School of Basic Medical Sciences, Peking University, for providing valuable opinions and suggestions on the study, especially the Tgr5 global deletion mice.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81900315, Grant No. 81625001) and the National Key Research & Development Program of China (Grant No. 2018YFC1312700, Grant No. 2018YFC1312701).

Author information

Affiliations

Authors

Contributions

All the authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Jiaxing Wang and Tan Xu. The first draft of the manuscript was written by Jiaxing Wang and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming Xu.

Ethics declarations

Ethics Approval

No human studies were carried out by the authors for this article. This study conformed to the Guidelines for the Care and Use of Laboratory Animals published by the US National Institutes of Health and was approved by the Institutional Animal Care and Use Committee at Peking University Health Science Center (LA2019138, LA2021363).

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Junjie Xiao oversaw the review of this article

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 83 KB)

Supplementary file2 (PDF 185 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, T. & Xu, M. Roles and Mechanisms of TGR5 in the Modulation of CD4+ T Cell Functions in Myocardial Infarction. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10164-2

Download citation

Keywords

  • TGR5
  • Myocardial infarction
  • T cell
  • Immunomodulation