Skip to main content

A Simple Model for Predicting 10-Year Cardiovascular Risk in Middle-Aged to Older Chinese: Guangzhou Biobank Cohort Study


The aim of this paper is to develop 10-year cardiovascular disease (CVD) risk prediction models for the contemporary Chinese populations based on the Guangzhou Biobank Cohort Study (GBCS) and to compare its performance with models based on Framingham’s general cardiovascular risk profile and the Prediction for Atherosclerotic CVD Risk in China (China-PAR) project. Subjects were randomly classified into the training (n = 15,000) and validation (n = 12,721) sets. During an average of 12.0 years’ follow-up, 3,732 CVD events occurred. A 10-year sex-specific CVD risk prediction model including age, systolic blood pressure, use of antihypertensive medication, smoking, and diabetes was developed. Compared with the Framingham and China-PAR models, the GBCS model had a better discrimination in both women (c-statistic 0.72, 95% CI 0.71–0.73) and men (c-statistic 0.68, 95% CI 0.67–0.70), and the risk predicted was closer to the actual risk. This prediction model would be useful for identifying individuals at higher risks of CVD in contemporary Chinese populations.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets analyzed during the current study are not publicly available due to the protection of the privacy of the participants but are available from the corresponding author on reasonable request.



Cardiovascular disease


Atherosclerotic cardiovascular disease


Coronary heart disease


Guangzhou Biobank Cohort Study


Prediction for ASCVD Risk in China


Systolic blood pressure


Diastolic blood pressure


Body mass index


Low-density lipoprotein


High-density lipoprotein


Area under curve


Receiver operating characteristic


  1. 1.

    Goff, D. C., Lloyd-Jones, D. M., Bennett, G., et al. (2014). 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Journal of the American College of Cardiology, 63(25), 2935–2959.

    Article  PubMed  Google Scholar 

  2. 2.

    DALYs, G. B. D., & Collaborators, H. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 1859–1922.

    Article  Google Scholar 

  3. 3.

    Ma, L. Y., Chen, W. W., Gao, R. L., et al. (2020). China cardiovascular diseases report 2018: An updated summary. Journal of Geriatric Cardiology, 17(1), 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Du, X., Patel, A., Anderson, C. S., Dong, J., & Ma, C. (2019). Epidemiology of cardiovascular disease in China and opportunities for improvement: JACC International. Journal of the American College of Cardiology, 73(24), 3135–3147.

    Article  PubMed  Google Scholar 

  5. 5.

    Michos, E. D., McEvoy, J. W., & Blumenthal, R. S. (2019). Lipid management for the prevention of atherosclerotic cardiovascular disease. New England Journal of Medicine, 381(16), 1557–1567.

    CAS  Article  Google Scholar 

  6. 6.

    Grundy, S. M., Stone, N. J., Bailey, A. L., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082–e1143.

    Article  PubMed  Google Scholar 

  7. 7.

    Damen, J. A. A. G., Hooft, L., Schuit, E., et al. (2016). Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    D’Agostino, R. B., Sr., Vasan, R. S., Pencina, M. J., et al. (2008). General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation, 117(6), 743–753.

    Article  PubMed  Google Scholar 

  9. 9.

    Conroy, R. (2003). Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. European Heart Journal, 24(11), 987–1003.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hippisley-Cox, J., Coupland, C., Vinogradova, Y., et al. (2007). Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: Prospective open cohort study. BMJ, 335(7611), 136.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hippisley-Cox, J., Coupland, C., Vinogradova, Y., et al. (2008). Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ, 336(7659), 1475–1482.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hippisley-Cox, J., Coupland, C., & Brindle, P. (2017). Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ, 357, j2099.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Woodward, M., Brindle, P., Tunstall-Pedoe, H., & estimation Sgor. (2007). Adding social deprivation and family history to cardiovascular risk assessment: The ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart, 93(2), 172–176.

    Article  PubMed  Google Scholar 

  14. 14.

    Assmann, G., Cullen, P., & Schulte, H. (2002). Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation, 105(3), 310–315.

    Article  PubMed  Google Scholar 

  15. 15.

    Assmann, G., Schulte, H., Cullen, P., & Seedorf, U. (2007). Assessing risk of myocardial infarction and stroke: New data from the Prospective Cardiovascular Munster (PROCAM) study. European Journal of Clinical Investigation, 37(12), 925–932.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Bhatnagar, A. (2017). Environmental determinants of cardiovascular disease. Circulation Research, 121(2), 162–180.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhao, D., Liu, J., Xie, W., & Qi, Y. (2015). Cardiovascular risk assessment: A global perspective. Nature Reviews Cardiology, 12(5), 301–311.

    Article  PubMed  Google Scholar 

  18. 18.

    Ueshima, H., Sekikawa, A., Miura, K., et al. (2008). Cardiovascular disease and risk factors in Asia: A selected review. Circulation, 118(25), 2702–2709.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kim, A. S., & Johnston, S. C. (2011). Global variation in the relative burden of stroke and ischemic heart disease. Circulation, 124(3), 314–323.

    Article  PubMed  Google Scholar 

  20. 20.

    Wang, W., Zhao, D., Liu, J., et al. (2003). Prospective study on the predictive model of cardiovascular disease risk in a Chinese population aged 35–64. The Chinese Journal of Cardiology, 31(12), 902–908.

    Article  Google Scholar 

  21. 21.

    Zhang, X. F., Attia, J., D’Este, C., Yu, X. H., & Wu, X. G. (2005). A risk score predicted coronary heart disease and stroke in a Chinese cohort. Journal of Clinical Epidemiology, 58(9), 951–958.

    Article  PubMed  Google Scholar 

  22. 22.

    Wu, Y., Liu, X., Li, X., et al. (2006). Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in Chinese adults. Circulation, 114(21), 2217–2225.

    Article  PubMed  Google Scholar 

  23. 23.

    Chien, K. L., Su, T. C., Hsu, H. C., et al. (2010). Constructing the prediction model for the risk of stroke in a Chinese population: Report from a cohort study in Taiwan. Stroke, 41(9), 1858–1864.

    Article  PubMed  Google Scholar 

  24. 24.

    Yang, X., Li, J., Hu, D., et al. (2016). Predicting the ten-year risks of atherosclerotic cardiovascular disease in chinese population: The China-PAR project. Circulation, 134(19), 1430–1440.

    Article  PubMed  Google Scholar 

  25. 25.

    Hu, W. S., Lee, J. H., Tsai, M. K., & Wen, C. P. (2017). A novel cardiovascular death prediction model for Chinese individuals: A prospective cohort study of 381,963 study participants. Atherosclerosis, 264, 19–28.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Li, J., Zhao, H., Song, B., et al. (2017). Risk prediction model of cardiovascular disease based on health management cohort. Journal of Shandong University ( Health Sciences), 55(6), 56–65.

    Article  Google Scholar 

  27. 27.

    Xing, X., Yang, X., Liu, F., et al. (2019). Predicting 10-year and lifetime stroke risk in Chinese population. Stroke, 50(9), 2371–2378.

    Article  PubMed  Google Scholar 

  28. 28.

    Yang, L., Wu, H., Jin, X., et al. (2020). Study of cardiovascular disease prediction model based on random forest in eastern China. Science and Reports, 10(1), 5245.

    CAS  Article  Google Scholar 

  29. 29.

    Zhao, D., Liu, J., Wang, M., Zhang, X., & Zhou, M. (2019). Epidemiology of cardiovascular disease in China: Current features and implications. Nature Reviews Cardiology, 16(4), 203–212.

    Article  PubMed  Google Scholar 

  30. 30.

    Jiang, C., Thomas, G. N., Lam, T. H., et al. (2006). Cohort profile: The Guangzhou Biobank Cohort Study, a Guangzhou-Hong Kong-Birmingham collaboration. International Journal of Epidemiology, 35(4), 844–852.

    Article  PubMed  Google Scholar 

  31. 31.

    Xu, L., Jiang, C. Q., Schooling, C. M., et al. (2014). Prediction of 4-year incident diabetes in older Chinese: Recalibration of the Framingham diabetes score on Guangzhou Biobank Cohort Study. Preventive Medicine, 69, 63–68.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Wang, T., Jiang, C. Q., Xu, L., et al. (2018). White blood cell count and all-cause and cause-specific mortality in the Guangzhou biobank cohort study. BMC Public Health, 18(1), 1232.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Xu, L., Lam, T. H., Jiang, C. Q., et al. (2019). Egg consumption and the risk of cardiovascular disease and all-cause mortality: Guangzhou Biobank Cohort Study and meta-analyses. European Journal of Nutrition, 58(2), 785–796.

    Article  PubMed  Google Scholar 

  34. 34.

    Sullivan, L. M., Massaro, J. M., & D’Agostino, R. B., Sr. (2004). Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Statistics in Medicine, 23(10), 1631–1660.

    Article  PubMed  Google Scholar 

  35. 35.

    D'Agostino RB and Nam B-H. (2003). Evaluation of the performance of survival analysis models: Discrimination and calibration measures. 23: 1-25.

  36. 36.

    Li XH, Song JC, Lin T, et al. (2016). Urbanization and health in China, thinking at the national, local and individual levels. Environ Health-Glob, 15 ARTN 32

  37. 37.

    Miao, J., & Wu, X. (2016). Urbanization, socioeconomic status and health disparity in China. Health & Place, 42, 87–95.

    Article  Google Scholar 

  38. 38.

    Liu, J. H. Y., D’Agostino, R. B., Sr., Wu, Z., Wang, W., Sun, J., Wilson, P. W., Kannel, W. B., & Zhao, D. (2004). Predictive value for the Chinese population of the Framingham CHD risk assessment tool Compared with the Chinese Multi-provincial Cohort Study. JAMA, 291, 2591–2599.

    CAS  Article  Google Scholar 

  39. 39.

    Ruwanpathirana, T., Owen, A., & Reid, C. M. (2015). Review on cardiovascular risk prediction. Cardiovascular Therapeutics, 33(2), 62–70.

    Article  PubMed  Google Scholar 

  40. 40.

    Virginia, M. M., Margaret, M. R., & Joseph, P. M. (2007). Use of BNP and CRP as biomarkers in assessing cardiovascular disease: Diagnosis versus risk. CurrVascPharmacology, 5(1), 15–25.

    Article  Google Scholar 

  41. 41.

    Fox, E. R., Samdarshi, T. E., Musani, S. K., et al. (2016). Development and validation of risk prediction models for cardiovascular events in black adults: The Jackson Heart Study Cohort. JAMA Cardiol, 1(1), 15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ravnskov, U., Diamond, D. M., Hama, R., et al. (2016). Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: A systematic review. British Medical Journal Open, 6(6), e010401.

    Article  Google Scholar 

  43. 43.

    Liang, Y., Vetrano, D. L., & Qiu, C. (2017). Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: A population-based study. BMC Geriatrics, 17(1), 294.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lee, S. H., Kim, D. H., Park, J. H., et al. (2018). Association between body mass index and mortality in the Korean elderly: A nationwide cohort study. PLoS ONE, 13(11), e0207508.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Khattar, R. S., Swales, J. D., Dore, C., Senior, R., & Lahiri, A. (2001). Effect of aging on the prognostic significance of ambulatory systolic, diastolic, and pulse pressure in essential hypertension. Circulation, 104(7), 783–789.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Benetos, A., Petrovic, M., & Strandberg, T. (2019). Hypertension management in older and frail older patients. Circulation Research, 124(7), 1045–1060.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses

Download references


The Guangzhou Biobank Cohort Study investigators include the following: Guangzhou Twelfth People’s Hospital, WS Zhang, M Cao, T Zhu, B Liu, and CQ Jiang (Co-PI); The University of Hong Kong, CM Schooling, SM McGhee, GM Leung, R Fielding, and TH Lam (Co-PI); and The University of Birmingham, P Adab, GN Thomas, and KK Cheng (Co-PI).


This work was funded by the Natural Science Foundation of China (No. 81941019), the Major Infectious Disease Prevention and Control of the National Science and Technique Major Project (2018ZX10715004), the National Key R&D Program of China (2017YFC0907100), the Natural Science Foundation of Guangdong (2018A030313140), the Guangzhou Science and Technology Bureau (201704030132), and the University of Birmingham, UK.

Author information




Ying Yue Huang, Wen Bo Tian, Chao Qiang Jiang, Wei Sen Zhang, Feng Zhu, Ya Li Jin, Tai Hing Lam, Lin Xu, and Kar Keung Cheng have substantial contributions to conception and design, acquisition of funding and data, and interpretation of data; YYH, THL, and LX analyzed the data; WBT, LX, and KKC drafted the article; YYH, WBT, THL, LX, and KKC revised it critically for important intellectual content; and all authors contributed to final approval of the paper.

Corresponding authors

Correspondence to Chao Qiang Jiang, Tai Hing Lam or Lin Xu.

Ethics declarations

Consent to Participate

The Guangzhou Medical Ethics Committee of the Chinese Medical Association approved the study, and all participants gave written, informed consent before participation.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Associate Editor Junjie Xiao oversaw the review of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 657 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y.Y., Tian, W.B., Jiang, C.Q. et al. A Simple Model for Predicting 10-Year Cardiovascular Risk in Middle-Aged to Older Chinese: Guangzhou Biobank Cohort Study. J. of Cardiovasc. Trans. Res. (2021).

Download citation


  • Cardiovascular disease
  • Risk assessment
  • Prediction model
  • Primary prevention