Skip to main content

MiR-32-3p Regulates Myocardial Injury Induced by Microembolism and Microvascular Obstruction by Targeting RNF13 to Regulate the Stability of Atherosclerotic Plaques

Abstract

This study aimed to explore the molecular mechanism of myocardial protection. The effects of miR-32-3p and ring finger protein 13 (RNF13) on endoplasmic reticulum (ER) stress-induced apoptosis of A-10 cells and human umbilical vein endothelial cells (HUVEC) were detected using flow cytometry. The effects of miR-32-3p and phenylbutyric acid (PBA) on plaque instability and myocardial tissue injury in rats were investigated after establishment of arterial plaque model and embolization model and treatment with miR-32-3p-antagomir and PBA. RNF13, which was differentially expressed in myocardial infarction, was the direct target gene of miR-32-3p. MiR-32-3p inhibited RNF13 expression and targeted RNF13 to inhibit ER stress-induced cell apoptosis. Furthermore, inhibiting miR-32-3p expression induced arterial plaque instability by reducing survival, increasing pathological lesions in arterial tissue, up-regulating ER stress-related proteins, and regulating the expressions of apoptosis-related proteins in the model rats. However, PBA reversed the effects of miR-32-3p-antagomir on the model rats.

Graphical abstract

MiR-32-3p regulates myocardial injury induced by micro-embolism and micro-vascular obstruction by targeting RNF13 to regulate the stability of atherosclerotic plaques

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Abbreviations

ACS:

Acute coronary syndrome

AMI:

Acute myocardial infarction

MI:

Myocardial infarction

miRNA:

microRNA

PBA:

Phenylbutyric acid

CME:

Coronary artery microembolization

ANT:

Antagomir

References

  1. 1.

    Kvisvik, B., Morkrid, L., Rosjo, H., Cvancarova, M., Rowe, A. D., Eek, C., et al. (2017). High-sensitivity troponin T vs I in acute coronary syndrome: prediction of significant coronary lesions and long-term prognosis. Clinical Chemistry, 63(2), 552–562. https://doi.org/10.1373/clinchem.2016.261107.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Xin, Y. G., Zhang, H. S., Li, Y. Z., Guan, Q. G., Guo, L., Gao, Y., et al. (2017). Efficacy and safety of ticagrelor versus clopidogrel with different dosage in high-risk patients with acute coronary syndrome. International Journal of Cardiology, 228, 275–279. https://doi.org/10.1016/j.ijcard.2016.11.160.

    Article  PubMed  Google Scholar 

  3. 3.

    Wang, X. H., Liu, S. Q., Wang, Y. L., & Jin, Y. (2014). Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome. Genetics and Molecular Research, 13(2), 4260–4266. https://doi.org/10.4238/2014.June.9.11.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Spacek, M., Zemanek, D., Hutyra, M., Sluka, M., & Taborsky, M. (2018). Vulnerable atherosclerotic plaque - a review of current concepts and advanced imaging. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 162(1), 10–17. https://doi.org/10.5507/bp.2018.004.

    Article  Google Scholar 

  5. 5.

    Douglas, G. R., Brown, A. J., Gillard, J. H., Bennett, M. R., Sutcliffe, M. P. F., & Teng, Z. (2017). Impact of fiber structure on the material stability and rupture mechanisms of coronary atherosclerotic plaques. Annals of Biomedical Engineering, 45(6), 1462–1474. https://doi.org/10.1007/s10439-017-1827-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kundel, V., Trivieri, M. G., Karakatsanis, N. A., Robson, P. M., Mani, V., Kizer, J. R., et al. (2018). Assessment of atherosclerotic plaque activity in patients with sleep apnea using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI): a feasibility study. Sleep & Breathing, 22(4), 1125–1135. https://doi.org/10.1007/s11325-018-1646-2.

    Article  Google Scholar 

  7. 7.

    Zhao, H., Qin, X., Wang, S., Sun, X., & Dong, B. (2017). Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability. Experimental and Therapeutic Medicine, 14(4), 3471–3476. https://doi.org/10.3892/etm.2017.4935.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chen, J., Wu, X., Yao, L., Yan, L., Zhang, L., Qiu, J., et al. (2017). Impairment of cargo transportation caused by gbf1 mutation disrupts vascular integrity and causes hemorrhage in zebrafish embryos. The Journal of Biological Chemistry, 292(6), 2315–2327. https://doi.org/10.1074/jbc.M116.767608.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Tampakakis, E., Tabit, C. E., Holbrook, M., Linder, E. A., Berk, B. D., Frame, A. A., et al. (2016). Intravenous lipid infusion induces endoplasmic reticulum stress in endothelial cells and blood mononuclear cells of healthy adults. Journal of the American Heart Association, 5(1). https://doi.org/10.1161/jaha.115.002574.

  10. 10.

    Shanahan, C. M., & Furmanik, M. (2017). Endoplasmic reticulum stress in arterial smooth muscle cells: a novel regulator of vascular disease. Current Cardiology Reviews, 13(2), 94–105. https://doi.org/10.2174/1573403x12666161014094738.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dong, Y., Fernandes, C., Liu, Y., Wu, Y., Wu, H., Brophy, M. L., et al. (2017). Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diabetes & Vascular Disease Research, 14(1), 14–23. https://doi.org/10.1177/1479164116666762.

    CAS  Article  Google Scholar 

  12. 12.

    Soisson, A. P., Berchuck, A., Lessey, B. A., Soper, J. T., Clarke-Pearson, D. L., McCarty Jr., K. S., et al. (1989). Immunohistochemical expression of TAG-72 in normal and malignant endometrium: correlation of antigen expression with estrogen receptor and progesterone receptor levels. American Journal of Obstetrics and Gynecology, 161(5), 1258–1263. https://doi.org/10.1016/0002-9378(89)90678-9.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ivanova, E. A., & Orekhov, A. N. (2016). The role of endoplasmic reticulum stress and unfolded protein response in atherosclerosis. International Journal of Molecular Sciences, 17(2). https://doi.org/10.3390/ijms17020193.

  14. 14.

    Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., & Hayashi, H. (2005). TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. The EMBO Journal, 24(6), 1243–1255. https://doi.org/10.1038/sj.emboj.7600596.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sun, Y., Abdul Aziz, A., Bowles, K., & Rushworth, S. (2018). High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma. Cancer Letters, 412, 37–45. https://doi.org/10.1016/j.canlet.2017.10.005.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Arshad, A., Gu, X., & Arshad, M. (2014). RNF13 protein regulates endoplasmic reticulum stress induced apoptosis in dopaminergic SH-SY5Y cells by enhancing IRE1alpha stability. Journal of Receptor and Signal Transduction Research, 34(2), 119–124. https://doi.org/10.3109/10799893.2013.863920.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., et al. (2016). Distribution of miRNA expression across human tissues. Nucleic Acids Research, 44(8), 3865–3877. https://doi.org/10.1093/nar/gkw116.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bian, B., Yu, X. F., Wang, G. Q., & Teng, T. M. (2017). Role of miRNA-1 in regulating connexin 43 in ischemia-reperfusion heart injury: a rat model. Cardiovascular Pathology, 27, 37–42. https://doi.org/10.1016/j.carpath.2016.12.006.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zhang, J. S., Zhao, Y., Lv, Y., Liu, P. Y., Ruan, J. X., Sun, Y. L., et al. (2017). miR-873 suppresses H9C2 cardiomyocyte proliferation by targeting GLI1. Gene, 626, 426–432. https://doi.org/10.1016/j.gene.2017.05.062.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Nie, L., Zhao, Y. N., Luo, H. Y., Hu, X. W., Zhang, L. P., & Liang, H. M. (2017). MiR-20 regulates myocardiac ischemia by targeting KATP subunit Kir6.1. Journal of Huazhong University of Science and Technology. Medical Sciences, 37(4), 486–490. https://doi.org/10.1007/s11596-017-1761-5.

    CAS  Article  Google Scholar 

  21. 21.

    Lin, F., Liao, C., Sun, Y., Zhang, J., Lu, W., Bai, Y., et al. (2017). Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Frontiers in Pharmacology, 8, 675. https://doi.org/10.3389/fphar.2017.00675.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chen, B., Meng, L., Shen, T., Gong, H., Qi, R., Zhao, Y., et al. (2017). Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochemical and Biophysical Research Communications, 490(4), 1326–1333. https://doi.org/10.1016/j.bbrc.2017.07.023.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Qi, J. C., Liu, P. G., Wang, C., Zheng, A. D., & Wan, Z. (2017). Tacrolimus protects vascular endothelial cells from injuries caused by Ox-LDL by regulating endoplasmic reticulum stress. European Review for Medical and Pharmacological Sciences, 21(17), 3966–3973.

    PubMed  Google Scholar 

  25. 25.

    Gao, S., & Liu, J. (2017). Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med, 3(2), 89–94. https://doi.org/10.1016/j.cdtm.2017.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kim, D. H., Lee, S. M., Lee, Y. J., Yoon, J. J., Tan, R., Yu, Y. C., et al. (2017). Effect of Paeotang on tumor necrosis factor alpha-induced vascular inflammation in human umbilical vein endothelial cells. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-017-2759-3.

  27. 27.

    Yang, D., Xiao, C. X., Su, Z. H., Huang, M. W., Qin, M., Wu, W. J., et al. (2017). (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-alpha-mediated inflammation response in endothelial cells by blocking the MAPK/NF-kappaB and activating Nrf2/HO-1. Phytomedicine, 32, 15–23. https://doi.org/10.1016/j.phymed.2017.04.005.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Poissonnier, L., Villain, G., Soncin, F., & Mattot, V. (2014). miR126-5p repression of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration. Cardiovascular Research, 102(3), 436–447. https://doi.org/10.1093/cvr/cvu040.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Jiang, W., Zhang, Z., Yang, H., Lin, Q., Han, C., & Qin, X. (2017). The involvement of miR-29b-3p in arterial calcification by targeting matrix metalloproteinase-2. BioMed Research International, 2017, 6713606. https://doi.org/10.1155/2017/6713606.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Liu, J., Xiao, X., Shen, Y., Chen, L., Xu, C., Zhao, H., et al. (2017). MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification. PLoS One, 12(3), e0174138. https://doi.org/10.1371/journal.pone.0174138.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Liu, W., Gong, Q., Ling, J., Zhang, W., Liu, Z., & Quan, J. (2014). Role of miR-424 on angiogenic potential in human dental pulp cells. Journal of Endodontia, 40(1), 76–82. https://doi.org/10.1016/j.joen.2013.09.035.

    Article  Google Scholar 

  32. 32.

    Sakamuri, S., Higashi, Y., Sukhanov, S., Siddesha, J. M., Delafontaine, P., Siebenlist, U., et al. (2016). TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis, 252, 153–160. https://doi.org/10.1016/j.atherosclerosis.2016.05.029.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Simpson, C. D., Ye, X. Y., Hellmann, J., & Tomlinson, C. (2010). Trends in cause-specific mortality at a Canadian outborn NICU. Pediatrics, 126(6), e1538–e1544. https://doi.org/10.1542/peds.2010-1167.

    Article  PubMed  Google Scholar 

  34. 34.

    Zhang, Q., Wang, K., Zhang, Y., Meng, J., Yu, F., Chen, Y., et al. (2010). The myostatin-induced E3 ubiquitin ligase RNF13 negatively regulates the proliferation of chicken myoblasts. The FEBS Journal, 277(2), 466–476. https://doi.org/10.1111/j.1742-4658.2009.07498.x.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Arshad, M., Ye, Z., Gu, X., Wong, C. K., Liu, Y., Li, D., et al. (2013). RNF13, a RING finger protein, mediates endoplasmic reticulum stress-induced apoptosis through the inositol-requiring enzyme (IRE1alpha)/c-Jun NH2-terminal kinase pathway. The Journal of Biological Chemistry, 288(12), 8726–8736. https://doi.org/10.1074/jbc.M112.368829.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zhang, Q., Meng, Y., Zhang, L., Chen, J., & Zhu, D. (2009). RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Research, 19(3), 348–357. https://doi.org/10.1038/cr.2008.285.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zhang, G., Zhou, H., He, C., Chen, Y., Ouyang, H., Zhang, P., et al. (2017). The mechanism of oxLDL/beta2GPI/anti-beta2GPI antibody complex promoting the expression of adhesion molecules in HUVECs. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 33(11), 1472–1478.

    PubMed  Google Scholar 

  38. 38.

    Chen, S. J., Kao, Y. H., Jing, L., Chuang, Y. P., Wu, W. L., Liu, S. T., et al. (2017). Epigallocatechin-3-gallate reduces scavenger receptor A Expression and foam cell formation in human macrophages. Journal of Agricultural and Food Chemistry, 65(15), 3141–3150. https://doi.org/10.1021/acs.jafc.6b05832.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Zhou, W., Wang, Y., Wu, R., He, Y., Su, Q., & Shi, G. (2017). MicroRNA-488 and -920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Research & Therapy, 19(1), 203. https://doi.org/10.1186/s13075-017-1418-6.

    CAS  Article  Google Scholar 

  40. 40.

    Oizumi, A., Nakayama, H., Okino, N., Iwahara, C., Kina, K., Matsumoto, R., et al. (2014). Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. PLoS One, 9(2), e89402. https://doi.org/10.1371/journal.pone.0089402.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Qin, L., Yang, W., Wang, Y. X., Wang, Z. J., Li, C. C., Li, M., et al. (2018). MicroRNA-497 promotes proliferation and inhibits apoptosis of cardiomyocytes through the downregulation of Mfn2 in a mouse model of myocardial ischemia-reperfusion injury. Biomedicine & Pharmacotherapy, 105, 103–114. https://doi.org/10.1016/j.biopha.2018.04.181.

    CAS  Article  Google Scholar 

  42. 42.

    Mens, M. M. J., & Ghanbari, M. (2018). Cell cycle regulation of stem cells by MicroRNAs. Stem Cell Reviews, 14(3), 309–322. https://doi.org/10.1007/s12015-018-9808-y.

    CAS  Article  PubMed Central  Google Scholar 

  43. 43.

    Rivera-Caravaca, J. M., Teruel-Montoya, R., Roldán, V., Cifuentes-Riquelme, R., Crespo-Matas, J. A., de Los Reyes-García, A. M., et al. (2020). Pilot study on the role of circulating miRNAs for the improvement of the predictive ability of the 2MACE score in patients with atrial fibrillation. Journal of Clinical Medicine, 9(11). https://doi.org/10.3390/jcm9113645.

  44. 44.

    Chen, C. H., Hsu, S. Y., Chiu, C. C., & Leu, S. (2019). MicroRNA-21 mediates the protective effect of cardiomyocyte-derived conditioned medium on ameliorating myocardial infarction in rats. Cells, 8(8). https://doi.org/10.3390/cells8080935.

  45. 45.

    Duan, M. J., Yan, M. L., Wang, Q., Mao, M., Su, D., Sun, L. L., et al. (2018). Overexpression of miR-1 in the heart attenuates hippocampal synaptic vesicle exocytosis by the posttranscriptional regulation of SNAP-25 through the transportation of exosomes. Cell Communication and Signaling: CCS, 16(1), 91. https://doi.org/10.1186/s12964-018-0303-5.

    CAS  Article  PubMed Central  Google Scholar 

  46. 46.

    Wang, X., Morelli, M. B., Matarese, A., Sardu, C., & Santulli, G. (2020). Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro and ex vivo. ESC Heart Fail, 7(1), 284–288. https://doi.org/10.1002/ehf2.12584.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kesidou, D., da Costa Martins, P. A., de Windt, L. J., Brittan, M., Beqqali, A., & Baker, A. H. (2020). Extracellular vesicle miRNAs in the promotion of cardiac neovascularisation. Frontiers in Physiology, 11, 579892. https://doi.org/10.3389/fphys.2020.579892.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Wojciechowska, A., Braniewska, A., & Kozar-Kaminska, K. (2017). MicroRNA in cardiovascular biology and disease. Adv. Clinical and Experimental Medicine, 26(5), 865–874. https://doi.org/10.17219/acem/62915.

    Article  Google Scholar 

  49. 49.

    Raitoharju, E., Lyytikainen, L. P., Levula, M., Oksala, N., Mennander, A., Tarkka, M., et al. (2011). miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere vascular study. Atherosclerosis, 219(1), 211–217. https://doi.org/10.1016/j.atherosclerosis.2011.07.020.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Bildirici, A. E., Arslan, S., Ozbilum Sahin, N., Berkan, O., Beton, O., & Yilmaz, M. B. (2018). MicroRNA-221/222 expression in atherosclerotic coronary artery plaque versus internal mammarian artery and in peripheral blood samples. Biomarkers, 23(7), 670–675. https://doi.org/10.1080/1354750x.2018.1474260.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Bai, Y., Wang, Y. L., Yao, W. J., Guo, L., Xi, H. F., Li, S. Y., et al. (2015). Expression of miR-32 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. International Journal of Clinical and Experimental Pathology, 8(1), 824–829.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ma, Y. B., Song, D. W., Nie, R. H., & Mu, G. Y. (2016). MicroRNA-32 functions as a tumor suppressor and directly targets EZH2 in uveal melanoma. Genetics and Molecular Research, 15(2). https://doi.org/10.4238/gmr.15027935.

  53. 53.

    Li, Z., & Tzeng, C. M. (2018). Integrated analysis of miRNA and mRNA expression profiles to identify miRNA targets. Methods in Molecular Biology, 1720, 141–148. https://doi.org/10.1007/978-1-4939-7540-2_10.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Heusch, G., Skyschally, A., & Kleinbongard, P. (2018). Coronary microembolization and microvascular dysfunction. International Journal of Cardiology, 258, 17–23. https://doi.org/10.1016/j.ijcard.2018.02.010.

    Article  PubMed  Google Scholar 

  55. 55.

    Su, Q., Li, L., Zhao, J., Sun, Y., & Yang, H. (2017). Effects of nicorandil on PI3K/Akt signaling pathway and its anti-apoptotic mechanisms in coronary microembolization in rats. Oncotarget, 8(59), 99347–99358. https://doi.org/10.18632/oncotarget.19966.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zhao, Y., Fang, Y., Zhao, H., Li, J., Duan, Y., Shi, W., et al. (2018). Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice. European Journal of Pharmacology, 818, 1–9. https://doi.org/10.1016/j.ejphar.2017.10.016.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Liu, L., Zhang, Y., Wang, Y., Peng, W., Zhang, N., & Ye, Y. (2018). Progesterone inhibited endoplasmic reticulum stress associated apoptosis induced by interleukin-1beta via the GRP78/PERK/CHOP pathway in BeWo cells. The Journal of Obstetrics and Gynaecology Research, 44(3), 463–473. https://doi.org/10.1111/jog.13549.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Tunik, S., Ayaz, E., Akpolat, V., Nergiz, Y., Isen, K., Celik, M. S., et al. (2013). Effects of pulsed and sinusoidal electromagnetic fields on MMP-2, MMP-9, collagen type IV and E-cadherin expression levels in the rat kidney: an immunohistochemical study. Anal Quant Cytopathol Histpathol, 35(5), 253–260.

    PubMed  Google Scholar 

  59. 59.

    Volkov, A. M., Murashov, I. S., Polonskaya, Y. V., Savchenko, S. V., Kazanskaya, G. M., Kliver, E. E., et al. (2018). Changes of content of matrix metalloproteinases and their tissue expression in various types of atherosclerotic plaques. Kardiologiia, 10, 12–18.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 81600283].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiang Su.

Ethics declarations

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Joost Sluijter oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Liu, Y., Gao, L. et al. MiR-32-3p Regulates Myocardial Injury Induced by Microembolism and Microvascular Obstruction by Targeting RNF13 to Regulate the Stability of Atherosclerotic Plaques. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10150-8

Download citation

Keywords

  • MiR-32-3p
  • RNF13
  • Atherosclerotic plaque stability
  • Embolism
  • Myocardium