Skip to main content

Changes in High-Frequency Intracardiac Electrogram Indicate Cardiac Ischemia


High-frequency QRS (HFQRS) analysis of surface ECG is a reliable marker of cardiac ischemia (CI). This study aimed to assess the response of HFQRS signals from standard intracardiac electrodes (iHFQRS) to CI in swine and compare them with conventional ST-segment deviations. Devices with three intracardiac leads were implanted in three swine in a controlled environment. CI was induced by inflating a balloon in epicardial coronary arteries. A designated signal-processing algorithm was applied to quantify the iHFQRS content before, during, and after each occlusion. iHFQRS time responses were compared to conventional ST-segment deviations. Thirty-three over thirty-nine (85%) of the occlusions presented significant reduction in the iHFQRS signal, preceding ST-segment change, being the only indicator of CI in brief occlusions. iHFQRS was found to be an early indicator for the onset of CI and demonstrated superior sensitivity to conventional ST-segment deviations during brief ischemic episodes.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Abboud, S., Cohen, R. J., Selwyn, A., Ganz, P., Sadeh, D., & Friedman, P. L. (1987). Detection of transient myocardial ischemia by computer analysis of standard and single-averaged high-frequency electrocardiograms in patients undergoing percutaneous transluminal coronary angioplasty. Circulation, 76(3), 585–596.

    CAS  Article  Google Scholar 

  2. 2.

    Ioannidis, J. P. A., Salem, D., Chew, P. W., & Lau, J. (2001). Accuracy and clinical effect of out-of-hospital electrocardiography in the diagnosis of acute cardiac ischemia: A meta-analysis. Annals of Emergency Medicine, 37(5), 461–470.

    CAS  Article  Google Scholar 

  3. 3.

    Dhruva, V. N., et al. (2007). ST-segment analysis using wireless technology in acute myocardial infarction (STAT-MI) trial. Journal of the American College of Cardiology, 50(6), 509–513.

    Article  Google Scholar 

  4. 4.

    Deanfield, J. E., Ribiero, P., Oakley, K., Krikler, S., & Selwyn, A. P. (1984). Analysis of ST-segment changes in normal subjects: Implications for ambulatory monitoring in angina pectoris. The American Journal of Cardiology, 54(10), 1321–1325.

    CAS  Article  Google Scholar 

  5. 5.

    Mor-Avi, V., Shargorodsky, B., Abboud, S., Laniado, S., & Akselrod, S. (1987). Effects of coronary occlusion on high-frequency content of the epicardial electrogram and body surface electrocardiogram. Circulation, 76(1), 237–243.

    CAS  Article  Google Scholar 

  6. 6.

    Abboud, S., Smith, J. M., Shargorodsky, B., Laniado, S., Sadeh, D., & Cohen, R. J. (1989). High frequency electrocardiography of three orthogonal leads in dogs during a coronary artery occlusion. Pacing and Clinical Electrophysiology, 12(4), 574–581.

    CAS  Article  Google Scholar 

  7. 7.

    Abboud, S., Cohen, R. J., & Sadeh, D. (1990). A spectral analysis of the high frequency QRS potentials observed during acute myocardial ischemia in dogs. International Journal of Cardiology, 26(3), 285–290.

    CAS  Article  Google Scholar 

  8. 8.

    Ringborn, M., et al. (2010). Comparison of high-frequency QRS components and ST-segment elevation to detect and quantify acute myocardial ischemia. Journal of Electrocardiology, 43(2), 113–120.

    Article  Google Scholar 

  9. 9.

    Belhassen, B., Miller, H. I., & Laniado, S. (1986). High frequency electrocardiography using an advanced method of signal averaging for non-invasive detection of coronary artery disease in patients with normal conventional electrocardiogram. Journal of Electrocardiology, 19(4), 371–380.

    Article  Google Scholar 

  10. 10.

    Schlegel, T., et al. (2004). Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. Mayo Clinic Proceedings, 79(3), 339–350.

    Article  Google Scholar 

  11. 11.

    Abboud, S., Cohen, R. J., Selwyn, A., Ganz, P., Sadeh, D., & Friedman, P. L. (1987). Detection of transient myocardial ischemia by computer analysis of standard and signal averaged {HF ECG} in patients undergoing {PTCA}. Circulation, 76, 585–596.

    CAS  Article  Google Scholar 

  12. 12.

    Toledo, E., et al. (2009). Detection of stress-induced myocardial ischemia from the depolarization phase of the cardiac cycle-a preliminary study. Journal of Electrocardiology, 42(3), 240–247.

    Article  Google Scholar 

  13. 13.

    Pettersson, J., et al. (2000). Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. Journal of the American College of Cardiology, 36(6), 1827–1834.

    CAS  Article  Google Scholar 

  14. 14.

    Sharir, T., et al. (2012). Use of electrocardiographic depolarization abnormalities for detection of stress-induced ischemia as defined by myocardial perfusion imaging. The American Journal of Cardiology, 109(5), 642–650.

    Article  Google Scholar 

  15. 15.

    Rosenmann, D., Mogilevski, Y., Amit, G., Davrath, L. R., & Tzivoni, D. (2013). High-frequency QRS analysis improves the specificity of exercise ECG testing in women referred for angiography. Journal of Electrocardiology, 46(1), 19–26.

    Article  Google Scholar 

  16. 16.

    Balfour, P. C., et al. (2020). High-frequency QRS analysis to supplement ST evaluation in exercise stress electrocardiography: Incremental diagnostic accuracy and net reclassification. Journal of Nuclear Cardiology, 27(6), 2063–2075.

    Article  Google Scholar 

  17. 17.

    Fletcher, G. F., et al. (2013). Exercise standards for testing and training: A scientific statement from the American heart association. Circulation, 128(8), 873–934.

    Article  Google Scholar 

  18. 18.

    Schaerli, N., et al. (2020). Incremental value of high-frequency QRS analysis for diagnosis and prognosis in suspected exercise-induced myocardial ischaemia. European Heart Journal Acute Cardiovascular Care, 9(8), 836–847.

    Article  Google Scholar 

  19. 19.

    Fischell, T. A., et al. (2005). Potential of an intracardiac electrogram for the rapid detection of coronary artery occlusion. Cardiovascular Revascularization Medicine, 6(1), 14–20.

    Article  Google Scholar 

  20. 20.

    Nabel, E. G., Shook, T. L., Meyerovitz, M., Ganz, P., Selwyn, A. P., & Friedman, P. L. (1988). Detection of pacing-induced myocardial ischemia by endocardial electrograms recorded during cardiac catheterization. Journal of the American College of Cardiology, 11(5), 983–992.

    CAS  Article  Google Scholar 

  21. 21.

    Siegel, S., Brodman, R., Fisher, J., Matos, J., & Furman, S. (1982). Intracardiac electrode detection of early or subendocardial ischemia. Pacing and Clinical Electrophysiology, 5(6), 892–902.

    CAS  Article  Google Scholar 

  22. 22.

    Varriale, P., & Niznik, J. (1978). Unipolar ventricular electrogram in the diagnosis of right ventricular ischemic injury. Pacing and Clinical Electrophysiology, 1(3), 335–341.

    CAS  Article  Google Scholar 

  23. 23.

    Theres, H., et al. (2002). Comparison of electrocardiogram and intrathoracic electrogram signals for detection of ischemic ST segment changes during normal sinus and ventricular paced rhythms. Journal of Cardiovascular Electrophysiology, 13(10), 990–995.

    Article  Google Scholar 

  24. 24.

    Fischell, T. A., et al. (2010). Initial clinical results using intracardiac electrogram monitoring to detect and alert patients during coronary plaque rupture and ischemia. Journal of the American College of Cardiology, 56(14), 1089–1098.

    Article  Google Scholar 

  25. 25.

    “FDA Approval of the AngelMed Guardian System.” [Online]. Available: Accessed 04/09/2018.

  26. 26.

    Abboud, S. (1987). Subtle alterations in the high-frequency QRS potentials during myocardial ischemia in dogs. Computers and Biomedical Research, 20(4), 384–395.

    CAS  Article  Google Scholar 

  27. 27.

    Amit, G., Granot, Y., & Abboud, S. (2014). Quantifying QRS changes during myocardial ischemia: Insights from high frequency electrocardiography. Journal of Electrocardiology, 47(4), 505–511.

    Article  Google Scholar 

  28. 28.

    Cardiol, R. J. (2014). 2013 ESC guidelines on the management of stable coronary artery disease: The task force on the management of stable coronary artery disease of the European Society of Cardiology. Russian Journal of Cardiology, 111(7), 7–79.

    Google Scholar 

  29. 29.

    Fischell, T. A., Fischell, D. R., Fischell, R. E., Virmani, R., DeVries, J. J., & Krucoff, M. W. (2006). Real-time detection and alerting for acute ST-segment elevation myocardial ischemia using an implantable, high-fidelity, intracardiac electrogram monitoring system with long-range telemetry in an ambulatory porcine model. Journal of the American College of Cardiology, 48(11), 2306–2314.

    Article  Google Scholar 

  30. 30.

    De Luca, G., Suryapranata, H., Ottervanger, J. P., & Antman, E. M. (2004). Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: Every minute of delay counts. Circulation, 109(10), 1223–1225.

    Article  Google Scholar 

  31. 31.

    Dracup, K., et al. (1997). The physician’s role in minimizing prehospital delay in patients at high risk for acute myocardial infarction: Recommendations from the National Heart Attack Alert Program. Annals of Internal Medicine, 126(8), 645–651.

    CAS  Article  Google Scholar 

  32. 32.

    Watanabe, T., et al. (2018). Continuous ST-monitoring function of implantable cardioverter defibrillator detects silent ischemia in patients with coronary artery disease. Journal of the American Heart Association, 7(13), 1–9.

    CAS  Google Scholar 

  33. 33.

    Gibson, C. M., et al. (2019). Implantable cardiac alert system for early recognition of ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 73(15), 1919–1927.

    Article  Google Scholar 

  34. 34.

    Holmes, D. R., et al. (2019). Implanted monitor alerting to reduce treatment delay in patients with acute coronary syndrome events. Journal of the American College of Cardiology, 74(16), 2047–2055.

    Article  Google Scholar 

  35. 35.

    S. H. Kazmi et al., (2020)“The Angelmed Guardian® System in the Detection of Coronary Artery Occlusion: Current Perspectives,” Medical Devices: Evidence and Research., vol. 12, no.1 pp.1-12, at Accessed 7 Jan 2020;

  36. 36.

    Gallino, A. (2017). The dilemma of detecting silent myocardial ischemia. International Journal of Cardiology, 244, 86.

    Article  Google Scholar 

Download references


All animal procedures were approved by the national ethical committee and performed in strict compliance with institutional and national guidelines for the care and use of laboratory animals (permit number IL-17-8-298).

Author information



Corresponding author

Correspondence to Noam Omer.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Marat Fudim oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omer, N., Bergman, E., Ben-David, T. et al. Changes in High-Frequency Intracardiac Electrogram Indicate Cardiac Ischemia. J. of Cardiovasc. Trans. Res. (2021).

Download citation


  • High-frequency ECG
  • Electrogram
  • Cardiac ischemia