Skip to main content

A Less than Provocative Approach for the Primary Prevention of CAD

Abstract

Coronary artery disease (CAD) risk increases in proportion to the magnitude and duration of exposure to plasma low-density lipoprotein cholesterol (LDL-C), doubling every additional decade of exposure. Early primary prevention is three times more effective than initiated later. Several clinical trials show plasma LDL-C of 15–40 mg/dL is more effective and equally safe as the Current Cardiovascular Clinical Practice Guidelines (CCCPG) recommended target of 70mg/dL. The cholesterol in the blood is the excess synthesized by the cells and secreted into the blood for disposal in the liver. The CCCPG is inadequate since traditional risk factors (TRF) are not detectable until the sixth and seventh decade. The genetic risk score (GRS) evaluated in 1 million individuals as a risk stratifier for CAD is superior to TRF. Genetic risk for CAD was reduced by 30–50% by statin therapy, PCSK9 inhibitors, and lifestyle changes. The GRS does not change during one’s lifetime and is inexpensive. Incorporating genetic risk stratification into CCCPG would induce a paradigm shift in the primary prevention of CAD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Murray, C. J., & Lopez, A. D. (2013). Measuring the global burden of disease. The New England Journal of Medicine, 369(5), 448–457.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., et al. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation, 137(12), e67–e492.

  3. 3.

    Grundy, S. M., Stone, N. J., Bailey, A. L., Craig, B., Birtcher Kim, K., Blumenthal Roger, S., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082–e1143.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Authors/Task Force Members. (2019). ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis, 290, 140–205.

    Article  CAS  Google Scholar 

  5. 5.

    Borén, J., Chapman, M. J., Krauss, R. M., Packard, C. J., Bentzon, J. F., Binder, C. J., et al. (2020). Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41(24), 2313–2330.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation, 131(4), e29–e322.

  7. 7.

    Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–2472.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Navar-Boggan, A. M., Peterson, E. D., D’Agostino, R. B., Neely, B., Sniderman, A. D., & Pencina, M. J. (2015). Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 131(5), 451–458.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Scandinavian Simvastatin Survival Study Group. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). The Lancet, 344(8934), 1383–1389.

    Google Scholar 

  10. 10.

    Baigent, C., Keech, A., Kearney, P. M., Blackwell, L., Buck, G., Pollicino, C., et al. (2005). Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 366(9493), 1267–1278.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. The Lancet, 388(10059), 2532–2561.

    CAS  Article  Google Scholar 

  12. 12.

    Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376(9753), 1670–1681.

    Article  CAS  Google Scholar 

  13. 13.

    Ference, B. A., Yoo, W., Alesh, I., Mahajan, N., Mirowska, K. K., Mewada, A., et al. (2012). Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. Journal of the American College of Cardiology, 60(25), 2631.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Swiger, K. J., Martin, S. S., Blaha, M. J., Toth, P. P., Nasir, K., Michos, E. D., et al. (2014). Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: The very large database of lipids (VLDL-10B). Journal of the American Heart Association, 3(2), e000851.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Domanski, M. J., Tian, X., Wu, C. O., Reis, J. P., Dey, A. K., Gu, Y., Zhao, L., Bae, S., Liu, K., Hasan, A. A., Zimrin, D., Farkouh, M. E., Hong, C. C., Lloyd-Jones, D. M., & Fuster, V. (2020). Time course of LDL cholesterol exposure and cardiovascular disease event risk. Journal of the American College of Cardiology, 76(13), 1507–1516.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Zeitouni, M., Nanna, M. G., Sun, J.-L., Chiswell, K., Peterson, E. D., & Navar, A. M. (2020). Performance of guideline recommendations for prevention of myocardial infarction in young adults. Journal of the American College of Cardiology, 76(6), 653–664.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Cohen, D. E. (2008). Balancing cholesterol synthesis and absorption in the gastrointestinal tract. Journal of Clinical Lipidology, 2(2), S1–S3.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Tabas, I. (2002). Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. The Journal of Clinical Investigation, 110(7), 905–911.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Cannon, C. P., Blazing, M. A., Giugliano, R. P., McCagg, A., White, J. A., Theroux, P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. The New England Journal of Medicine, 372(25), 2387–2397.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. The New England Journal of Medicine, 376(18), 1713–1722.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Giugliano, R. P., Pedersen, T. R., Park, J.-G., De Ferrari, G. M., Gaciong, Z. A., Ceska, R., et al. (2017). Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the FOURIER trial. The Lancet, 390(10106), 1962–1971.

    CAS  Article  Google Scholar 

  22. 22.

    Schwartz, G. G., Steg, P. G., Szarek, M., Bhatt, D. L., Bittner, V. A., Diaz, R., et al. (2018). Alirocumab and cardiovascular outcomes after acute coronary syndrome. The New England Journal of Medicine, 379(22), 2097–2107.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Ference, B. A., Cannon, C. P., Landmesser, U., Lüscher, T. F., Catapano, A. L., & Ray, K. K. (2018). Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: An analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. European Heart Journal, 39(27), 2540–2545.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    High-dose atorvastatin after stroke or transient ischemic attack - PubMed [Internet]. [cited 2020 Oct 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/16899775/

  25. 25.

    Kones, R., & Rumana, U. (2015). Current treatment of dyslipidemia: A new paradigm for statin drug use and the need for additional therapies. Drugs, 75(11), 1187–1199.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Fujita, H., Okada, T., Inami, I., Makimoto, M., Hosono, S., Minato, M., et al. (2008). Low– density lipoprotein profile changes during the neonatal period. Journal of Perinatology, 28(5), 335–340.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Pac-Kozuchowska, E. (2007). Evaluation of lipids, lipoproteins and apolipoproteins concentrations in cord blood serum of newborns from rural and urban environments. Annals of Agricultural and Environmental Medicine, 14(1), 25–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chan, L., & Boerwinkle, E. (1994). Gene-environment interactions and gene therapy in atherosclerosis. Cardiology in Review, 2, 130–137.

    Article  Google Scholar 

  29. 29.

    McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316(5830), 1488–1491.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A., et al. (2007). A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 316(5830), 1491–1493.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Erdmann, J., Kessler, T., Munoz Venegas, L., & Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 1241–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Khera, A. V., Chaffin, M., Zekavat, S. M., Collins, R. L., Roselli, C., Natarajan, P., et al. (2019). Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation, 139(13), 1593–1602.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Inouye, M., Abraham, G., Nelson, C. P., Wood, A. M., Sweeting, M. J., Dudbridge, F., et al. (2018). Genomic risk prediction of coronary artery disease in 480,000 adults. Journal of the American College of Cardiology, 72(16), 1883–1893.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Davies, R. W., Dandona, S., Stewart, A. F., et al. (2010). Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circulation. Cardiovascular Genetics, 3(5), 468–474.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Assimes, T. L., & Roberts, R. (2016). Genetics: Implications for prevention and management of coronary artery disease. Journal of the American College of Cardiology, 68(25), 2797–2818.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., et al. (2018). Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics, 50(9), 1219–1224.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Mega, J. L., Stitziel, N. O., Smith, J. G., Chasman, D. I., Caulfield, M., Devlin, J. J., et al. (2015). Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet, 385(9984), 2264–2271.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Natarajan, P., Young, R., Stitziel, N. O., Padmanabhan, S., Baber, U., Mehran, R., et al. (2017). Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation, 135(22), 2091–2101.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Abraham, G., Havulinna, A. S., Bhalala, O. G., et al. (2016). Genomic prediction of coronary heart disease. European Heart Journal, 37(43), 3267–3278.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Marston, N. A., Kamanu, F. K., Francesco, N., Yared, G., Carolina, R., Sever Peter, S., et al. (2020). Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score. Circulation, 141(8), 616–623.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Amy, D., Gabriel, S. P., Schwartz, G. G., Michael, S., Emil, H., Lina, B., et al. (2020). Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation, 141(8), 624–636.

    Article  Google Scholar 

  42. 42.

    Elliott, J., Bodinier, B., Bond, T. A., et al. (2020). Predictive accuracy of a polygenic risk score–Enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA, 323(7), 636–645.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Mosley, J. D., Gupta, D. K., Tan, J., et al. (2020). Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA, 323(7), 627–635.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Aragam, K. G., Dobbyn, A., Judy, R., Chaffin, M., Chaudhary, K., Hindy, G., et al. (2020). Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease. Journal of the American College of Cardiology, 75(22), 2769.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wang, M., Menon, R., Mishra, S., Patel, A. P., Chaffin, M., Tanneeru, D., et al. (2020). Validation of a genome-wide polygenic score for coronary artery disease in South Asians. Journal of the American College of Cardiology, 76(6), 703–714.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Khera, A. V., Emdin, C. A., Drake, I., Natarajan, P., Bick, A. G., Cook, N. R., et al. (2016). Genetic risk, adherence to a healthy lifestyle, and coronary disease. The New England Journal of Medicine, 375(24), 2349–2358.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Tikkanen, E., Gustafsson, S., & Ingelsson, E. (2018). Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: Longitudinal analyses in the UK Biobank study. Circulation., 137(24), 2583–2591.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

Dr. Robert Roberts has received research funding from the Canadian Institutes of Health Research (MOP P82810), the Canada Foundation for Innovation (11966), and the Dignity Health Foundation (455005033246).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Roberts.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Paul J. R. Barton oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, R., Fair, J. A Less than Provocative Approach for the Primary Prevention of CAD. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10144-6

Download citation

Keywords

  • Genetics
  • Coronary artery disease
  • Genetic risk score
  • Plasma cholesterol
  • Primary prevention
  • Traditional risk factors