Skip to main content

Simulation of Fluid-Structure Interaction in Extracorporeal Membrane Oxygenation Circulatory Support Systems

Abstract

Extracorporeal membrane oxygenation (ECMO) is a vital mechanical circulatory support modality capable of restoring perfusion for the patient in circulatory failure. Despite increasing adoption of ECMO, there is incomplete understanding of its effects on systemic hemodynamics and how the vasculature responds to varying levels of continuous retrograde perfusion. To gain further insight into the complex ECMO:failing heart circulation, computational fluid dynamics simulations focused on perfusion distribution and hemodynamic flow patterns were conducted using a patient-derived aorta geometry. Three case scenarios were simulated: (1) healthy control; (2) 90% ECMO-derived perfusion to model profound heart failure; and, (3) 50% ECMO-derived perfusion to model the recovering heart. Fluid-structure interface simulations were performed to quantify systemic pressure and vascular deformation throughout the aorta over the cardiac cycle. ECMO support alters pressure distribution while decreasing shear stress. Insights derived from computational modeling may lead to better understanding of ECMO support and improved patient outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

Fr:

French (unit of measurement)

kg:

Kilogram

m:

Meter

L:

Liter

LPM:

Liter per minute

ECMO:

Extracorporeal membrane oxygenation

CFD:

Computational fluid dynamics

MCS:

Mechanical circulatory support

VOF:

Volume of fluid

Q:

Flow

C:

Capacitance

R:

Resistance

BCA:

Brachiocephalic artery

LCCA:

Left common carotid artery

LSA:

Left subclavian artery

CA:

Celiac artery

SMA:

Superior mesenteric artery

LRA:

left renal artery

RRA:

Right renal artery

IMA:

Inferior mesenteric artery

LCI:

Left common iliac artery

RCI:

Right common iliac artery

References

  1. 1.

    Lorusso, R., Alexander, P., Rycus, P., & Barbaro, R. (2019). The Extracorporeal Life Support Organization Registry: update and perspectives. Annals Cardiothorac Surgery, 8(1), 93–98. https://doi.org/10.21037/acs.2018.11.03.

    Article  Google Scholar 

  2. 2.

    Paden, M. L., Conrad, S. A., Rycus, P. T., Thiagarajan, R. R., & Registry, E. L. S. O. (2013). Extracorporeal Life Support Organization Registry Report 2012. ASAIO Journal, 59(3), 202–210. https://doi.org/10.1097/MAT.0b013e3182904a52.

    Article  PubMed  Google Scholar 

  3. 3.

    Ghodsizad, A., Koerner, M. M., Brehm, C. E., & El-Banayosy, A. (2014). The role of extracorporeal membrane oxygenation circulatory support in the “crash and burn” patient: From implantation to weaning. Current Opinion in Cardiology, 29(3), 275–280. https://doi.org/10.1097/HCO.0000000000000061.

    Article  PubMed  Google Scholar 

  4. 4.

    Khan, M. H., Corbett, B. J., & Hollenberg, S. M. (2014). Mechanical circulatory support in acute cardiogenic shock. F1000Prime Reports, 6(3), 91. https://doi.org/10.12703/P6-91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Goldberg, R. J., Samad, N. A., Yarzebski, J., Gurwitz, J., Bigelow, C., & Gore, J. M. (1999). Temporal trends in cardiogenic shock complicating acute myocardial infarction. The New England Journal of Medicine, 340(15), 1162–1168.

    CAS  Article  Google Scholar 

  6. 6.

    Reyentovich, A., Barghash, M. H., & Hochman, J. S. (2016). Management of refractory cardiogenic shock. Nature Reviews. Cardiology, 13(8), 481–492. https://doi.org/10.1038/nrcardio.2016.96.

    Article  PubMed  Google Scholar 

  7. 7.

    Karagiannidis, C., Brodie, D., Strassmann, S., et al. (2016). Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensive Care Medicine, 42(5). https://doi.org/10.1007/s00134-016-4273-z.

  8. 8.

    El Sibai, R., Bachir, R., & El Sayed, M. (2018). ECMO use and mortality in adult patients with cardiogenic shock: a retrospective observational study in U.S. hospitals. BMC Emergency Medicine, 18(1), 20. https://doi.org/10.1186/s12873-018-0171-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ventetuolo, C. E., & Muratore, C. S. (2014). Extracorporeal life support in critically ill adults. American Journal of Respiratory and Critical Care Medicine, 190(5), 497–508. https://doi.org/10.1164/rccm.201404-0736CI.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Aubron, C., Cheng, A. C., Pilcher, D., et al. (2013). Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: A 5-year cohort study. Critical Care, 17(2), R73. https://doi.org/10.1186/cc12681.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bisdas, T., Beutel, G., Warnecke, G., et al. (2011). Vascular complications in patients undergoing femoral cannulation for extracorporeal membrane oxygenation support. The Annals of Thoracic Surgery, 92(2), 626–631. https://doi.org/10.1016/J.ATHORACSUR.2011.02.018.

    Article  PubMed  Google Scholar 

  12. 12.

    Cheng, R., Hachamovitch, R., Kittleson, M., et al. (2014). Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1,866 adult patients. The Annals of Thoracic Surgery, 97(2). https://doi.org/10.1016/j.athoracsur.2013.09.008.

  13. 13.

    Abrams, D. C., Prager, K., Blinderman, C. D., Burkart, K. M., & Brodie, D. (2014). Ethical dilemmas encountered with the use of extracorporeal membrane oxygenation in adults. Chest., 145(4), 876–882. https://doi.org/10.1378/chest.13-1138.

    Article  PubMed  Google Scholar 

  14. 14.

    Keller, S. P. (2019). Management of peripheral venoarterial extracorporeal membrane oxygenation in cardiogenic shock. Critical Care Medicine, 47(9), 1235–1242. https://doi.org/10.1097/CCM.0000000000003879.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bartlett, R. H., & Gattinoni, L. (2010). Current status of extracorporeal life support (ECMO) for cardiopulmonary failure. Minerva Anestesiologica, 76(7), 534–540 http://www.ncbi.nlm.nih.gov/pubmed/20613694.

    CAS  PubMed  Google Scholar 

  16. 16.

    Lequier, L., Horton, S., McMullan, D., & Bartlett, R. H. (2013). Extracorporeal membrane oxygenation circuitry. Pediatr Crit care, 14, 1–10. https://doi.org/10.1097/PCC.0b013e318292dd10.Extracorporeal.

    Article  Google Scholar 

  17. 17.

    Gehron, J., Schuster, M., Rindler, F., et al. (2020). Watershed phenomena during extracorporeal life support and their clinical impact: A systematic in vitro investigation. ESC Hear Fail, 7(4), 1850–1861. https://doi.org/10.1002/ehf2.12751.

    Article  Google Scholar 

  18. 18.

    Nezami, F. R., Khodaee, F., Edelman, E. R., & Keller, S. P. (July 2020). A computational fluid dynamics study of the extracorporeal membrane oxygenation-failing heart circulation. ASAIO Journal. https://doi.org/10.1097/MAT.0000000000001221.

  19. 19.

    Gu, K., Zhang, Y., Gao, B., Chang, Y., & Zeng, Y. (2016). Hemodynamic differences between central ecmo and peripheral ECMO: A primary CFD study. Medical Science Monitor, 22, 717–726. https://doi.org/10.12659/MSM.895831.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stevens, M. C., Callaghan, F. M., Forrest, P., Bannon, P. G., & Grieve, S. M. (2018). A computational framework for adjusting flow during peripheral extracorporeal membrane oxygenation to reduce differential hypoxia. Journal of Biomechanics, 79, 39–44. https://doi.org/10.1016/j.jbiomech.2018.07.037.

    Article  PubMed  Google Scholar 

  21. 21.

    Yushkevich, P. A., Piven, J., Hazlett, H. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage., 31(3), 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015.

    Article  PubMed  Google Scholar 

  22. 22.

    Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. MeshLab: An open-source mesh processing tool.

  23. 23.

    Ramezanpour, M., Maerefat, M., Ramezanpour, N., Mokhtari-Dizaji, M., Roshanali, F., & Nezami, F. R. (2019). Numerical investigation of the effects of bed shape on the end-to-side CABG hemodynamics. J Mech Med Biol, 19(4). https://doi.org/10.1142/S0219519419500192.

  24. 24.

    Ramezanpour, M., Rikhtegar Nezami, F., Ramezanpour, N., et al. (2020). Role of vessel microstructure in the longevity of end-to-side grafts. Journal of Biomechanical Engineering, 142(2). https://doi.org/10.1115/1.4043873.

  25. 25.

    Alastruey, J., Xiao, N., Fok, H., Schaeffter, T., & Figueroa, C. A. (2016). On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J R Soc Interface, 13(119). https://doi.org/10.1098/rsif.2016.0073.

  26. 26.

    Rikhtegar Nezami, F., Athanasiou, L. S., Amrute, J. M., & Edelman, E. R. (2018). Vascular biology and microcirculation: Multilayer flow modulator enhances vital organ perfusion in patients with type b aortic dissection. American Journal of Physiology. Heart and Circulatory Physiology, 315(5), H1182–H1193. https://doi.org/10.1152/ajpheart.00199.2018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kass, D. A., & Kelly, R. P. (1992). Ventriculo-arterial coupling: concepts, assumptions, and applications. Annals of Biomedical Engineering, 20(1), 41–62 http://www.ncbi.nlm.nih.gov/pubmed/1562104. Accessed October 10, 2017.

    CAS  Article  Google Scholar 

  28. 28.

    Laskey, W. K., Parker, H. G., Ferrari, V. A., Kussmaul, W. G., & Noordergraaf, A. (1990). Estimation of total systemic arterial compliance in humans. Journal of Applied Physiology, 69(1), 112–119.

    CAS  Article  Google Scholar 

  29. 29.

    Parker, K. H., Jones, C. J. H., Dawson, J. R., & Gibson, D. G. (1988). What stops the flow of blood from the heart? Heart and Vessels, 4(4), 241–245. https://doi.org/10.1007/BF02058593.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    BAUERNSCHMITT, R., MEHMANESH, H., SCHULZ, S., et al. (1999). Aortic input impedance and ventriculoarterial coupling following cardioversion/defibrillation. Pacing and Clinical Electrophysiology, 22(7), 1047–1053. https://doi.org/10.1111/j.1540-8159.1999.tb00569.x.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2009). The arterial windkessel. Medical & Biological Engineering & Computing, 47(2), 131–141. https://doi.org/10.1007/s11517-008-0359-2.

    Article  Google Scholar 

  32. 32.

    Elzinga, G., & Westerhof, N. (1991). Matching between ventricle and arterial load. An evolutionary process. Circulation Research, 68(6), 1495–1500 http://www.ncbi.nlm.nih.gov/pubmed/2036707. Accessed September 22, 2017.

    CAS  Article  Google Scholar 

  33. 33.

    Sasayama, S., & Asanoi, H. (1991). Coupling between the heart and arterial system in heart failure. The American Journal of Medicine, 90(5B), 14S–18S http://www.ncbi.nlm.nih.gov/pubmed/2048567. Accessed Oct 10, 2017.

    CAS  Article  Google Scholar 

Download references

Funding

SPK supported by NHLBI 5K08HL14332.

ERE supported by NIH R0149039.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven P. Keller.

Ethics declarations

Conflict of Interest

E.R.E. reports receiving a research grant from Abiomed, Inc. S.P.K. reports serving on the Abiomed, Inc. Critical Care Advisory Board. E.R.E. and S.P.K. are co-inventors on submitted patent applications on subjects broadly relevant to mechanical circulatory support. The authors deny any other disclosures relevant to the submitted work.

Human Subjects

No human studies were carried out by the authors for this article. De-identified patient imaging data was used for this article in accordance with Institutional Review Board approval.

Informed Consent

Institutional Review Board provided a waiver for obtaining informed patient consent.

Animal Studies

No animal studies were carried out by the authors for this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Navin Kumar Kapur oversaw the review of this article

Supplementary Information

Video 1

Arterial dynamics in ECMO-failing heart circulation modeling (WMV 1087 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nezami, F.R., Ramezanpour, M., Khodaee, F. et al. Simulation of Fluid-Structure Interaction in Extracorporeal Membrane Oxygenation Circulatory Support Systems. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10143-7

Download citation

Keywords

  • Extracorporeal membrane oxygenation
  • Mechanical circulatory support
  • Fluid-structure interaction
  • Computational fluid dynamics