Skip to main content

Impella RP Versus Pharmacologic Vasoactive Treatment in Profound Cardiogenic Shock due to Right Ventricular Failure

Abstract

The aim was to translationally compare a pharmacologic strategy versus treatment with the Impella RP in profound RV cardiogenic shock (CS). The pigs were allocated to either vasoactive therapy with norepinephrine (0.10 μg/kg/min) for the first 30 min, supplemented by an infusion of milrinone (0.4 μg/kg/min) for additional 150 min, or treatment with the Impella RP device for 180 min. Total RV workload (Pressure-volume-area × heart rate*103(mmHg/min)) remained unaffected upon treatment with the Impella RP and increased in the vasoactive group (CS 179[147;228] to norepinephrine 268[247;306](p = 0.002 compared to Impella RP) and norepinephrine + milrinone 366[329;422] (p = 0.002 compared to Impella RP). A trend towards higher venous cerebral oxygen saturation was observed with norepinephrine than Impella RP (Impella RP 51[47;61]% vs norepinephrine 62[57;71]%; p = 0.07), which became significantly higher with the addition of milrinone (Impella RP 45[32;63]% vs norepinephrine + milrinone 73[66;81]%; p = 0.002). The Impella RP unloaded the failing RV. In contrast, vasoactive treatment led to enhanced cerebral venous oxygen saturation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CS:

Cardiogenic shock

CVP:

Central venous pressure

EDV:

End-diastolic volume

EDP:

End-diastolic pressure

ESP:

End-systolic pressure

HR:

Heart rate

LV:

Left ventricle

MAP:

Mean arterial pressure

PAP:

Pulmonary artery pressure

PVA:

Pressure-volume area

RV:

Right ventricle

SW:

Stroke work

References

  1. 1.

    Helgestad OKL, Josiassen J, Hassager C, Jensen LO, Holmvang L, Sørensen A, Frydland M, Lassen AT, Udesen NLJ, Schmidt H, Ravn HB, Møller JE. Temporal trends in incidence and patient characteristics in cardiogenic shock following acute myocardial infarction from 2010 to 2017: a Danish cohort study. Eur J Heart Fail. 2019 Nov;21(11):1370-1378

  2. 2.

    Goldberg, R. J., Spencer, F. A., Gore, J. M., Lessard, D., & Yarzebski, J. (2009). Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: A population-based perspective. Circulation, 119, 1211–1219.

    Article  Google Scholar 

  3. 3.

    Goldberg, R. J., Makam, R. C., Yarzebski, J., McManus, D. D., Lessard, D., & Gore, J. M. (2016). Decade-long trends (2001-2011) in the incidence and hospital death rates associated with the in-hospital development of cardiogenic shock after acute myocardial infarction. Circulation. Cardiovascular Quality and Outcomes, 9, 117–125.

    Article  Google Scholar 

  4. 4.

    Engstrom, A. E., Vis, M. M., Bouma, B. J., et al. (2010). Right ventricular dysfunction is an independent predictor for mortality in ST-elevation myocardial infarction patients presenting with cardiogenic shock on admission. European Journal of Heart Failure, 12, 276–282.

    Article  Google Scholar 

  5. 5.

    Goldstein, J. A. (2003). Right versus left ventricular shock: a tale of two ventricles. Journal of the American College of Cardiology, 41, 1280–1282.

    Article  Google Scholar 

  6. 6.

    Goldstein, J. A. (2002). Pathophysiology and management of right heart ischemia. Journal of the American College of Cardiology, 40, 841–853.

    Article  Google Scholar 

  7. 7.

    Josiassen, J., Helgestad, O. K. L., Udesen, N. L. J., et al. (2020). Unloading using Impella CP during profound cardiogenic shock caused by left ventricular failure in a large animal model: Impact on the right ventricle. Intensive Care Medicine Experimental, 8, 41.

    Article  Google Scholar 

  8. 8.

    Josiassen, J., Helgestad, O. K. L., Moller, J. E., et al. (2021). Cardiogenic shock due to predominantly right ventricular failure complicating acute myocardial infarction. European Heart Journal Acute Cardiovascular Care, 10, 33–39.

    Article  Google Scholar 

  9. 9.

    Haddad, F., Doyle, R., Murphy, D. J., & Hunt, S. A. (2008). Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation, 117, 1717–1731.

    Article  Google Scholar 

  10. 10.

    Kapur, N. K., Esposito, M. L., Bader, Y., et al. (2017). Mechanical circulatory support devices for acute right ventricular failure. Circulation, 136, 314–326.

    Article  Google Scholar 

  11. 11.

    Inohara, T., Kohsaka, S., Fukuda, K., & Menon, V. (2013). The challenges in the management of right ventricular infarction. European Heart Journal Acute Cardiovascular Care, 2, 226–234.

    Article  Google Scholar 

  12. 12.

    Jacobs, A. K., Leopold, J. A., Bates, E., et al. (2003). Cardiogenic shock caused by right ventricular infarction: A report from the SHOCK registry. Journal of the American College of Cardiology, 41, 1273–1279.

    Article  Google Scholar 

  13. 13.

    Pfisterer, M. (2003). Right ventricular involvement in myocardial infarction and cardiogenic shock. Lancet, 362, 392–394.

    Article  Google Scholar 

  14. 14.

    Helgestad, O. K. L., Josiassen, J., Hassager, C., et al. (2020). Contemporary trends in use of mechanical circulatory support in patients with acute MI and cardiogenic shock. Open Heart, 7, e001214.

    Article  Google Scholar 

  15. 15.

    Mobius-Winkler, S., Fritzenwanger, M., Pfeifer, R., & Schulze, P. C. (2018). Percutaneous support of the failing left and right ventricle-recommendations for the use of mechanical device therapy. Heart Failure Reviews, 23, 831–839.

    Article  Google Scholar 

  16. 16.

    Pieri, M., & Pappalardo, F. (2018). Impella RP in the treatment of right ventricular failure: What we know and where we go. Journal of Cardiothoracic and Vascular Anesthesia, 32, 2339–2343.

    Article  Google Scholar 

  17. 17.

    Anderson, M. B., Goldstein, J., Milano, C., et al. (2015). Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. The Journal of Heart and Lung Transplantation: the official publication of the International Society for Heart Transplantation, 34, 1549–1560.

    Article  Google Scholar 

  18. 18.

    Moller-Helgestad, O. K., Ravn, H. B., & Moller, J. E. (1816). Large porcine model of profound acute ischemic cardiogenic shock. Methods in Molecular Biology, 2018, 343–352.

    Google Scholar 

  19. 19.

    Baan, J., van der Velde, E. T., de Bruin, H. G., et al. (1984). Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation, 70, 812–823.

    CAS  Article  Google Scholar 

  20. 20.

    Smalling, R. W., Cassidy, D. B., Barrett, R., Lachterman, B., Felli, P., & Amirian, J. (1992). Improved regional myocardial blood flow, left ventricular unloading, and infarct salvage using an axial-flow, transvalvular left ventricular assist device. A comparison with intra-aortic balloon counterpulsation and reperfusion alone in a canine infarction model. Circulation, 85, 1152–1159.

    CAS  Article  Google Scholar 

  21. 21.

    Ortiz-Perez, J. T., Lee, D. C., Meyers, S. N., Davidson, C. J., Bonow, R. O., & Wu, E. (2010). Determinants of myocardial salvage during acute myocardial infarction: evaluation with a combined angiographic and CMR myocardial salvage index. JACC. Cardiovascular Imaging, 3, 491–500.

    Article  Google Scholar 

  22. 22.

    Briceno, N., Annamalai, S. K., Reyelt, L., et al. (2019). Left ventricular unloading increases the coronary collateral flow index before reperfusion and reduces infarct size in a swine model of acute myocardial infarction. Journal of the American Heart Association, 8, e013586.

    Article  Google Scholar 

  23. 23.

    Saku, K., Kakino, T., Arimura, T., et al. (2018). Left ventricular mechanical unloading by total support of impella in myocardial infarction reduces infarct size, preserves left ventricular function, and prevents subsequent heart failure in dogs. Circulation. Heart Failure, 11, e004397.

    Article  Google Scholar 

  24. 24.

    Overgaard, C. B., & Dzavik, V. (2008). Inotropes and vasopressors: Review of physiology and clinical use in cardiovascular disease. Circulation, 118, 1047–1056.

    Article  Google Scholar 

  25. 25.

    Apitz, C., Honjo, O., Friedberg, M. K., et al. (2012). Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. The Thoracic and Cardiovascular Surgeon, 60, 17–23.

    Article  Google Scholar 

  26. 26.

    Kerbaul, F., Rondelet, B., Motte, S., et al. (2004). Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Critical Care Medicine, 32, 1035–1040.

    CAS  Article  Google Scholar 

  27. 27.

    Hyldebrandt, J. A., Siven, E., Agger, P., et al. (2015). Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding. American Journal of Physiology. Heart and Circulatory Physiology, 309, H206–H212.

    CAS  Article  Google Scholar 

  28. 28.

    Annane, D., Ouanes-Besbes, L., de Backer, D., et al. (2018). A global perspective on vasoactive agents in shock. Intensive Care Medicine, 44, 833–846.

    CAS  Article  Google Scholar 

  29. 29.

    Lincoln, J. (1995). Innervation of cerebral arteries by nerves containing 5-hydroxytryptamine and noradrenaline. Pharmacology & Therapeutics, 68, 473–501.

    CAS  Article  Google Scholar 

  30. 30.

    Cavallotti, C., Bruzzone, P., & Mancone, M. (2002). Catecholaminergic nerve fibers and beta-adrenergic receptors in the human heart and coronary vessels. Heart and Vessels, 17, 30–35.

    Article  Google Scholar 

  31. 31.

    Bola, R. A., & Kiyatkin, E. A. (2018). Inflow of oxygen and glucose in brain tissue induced by intravenous norepinephrine: relationships with central metabolic and peripheral vascular responses. Journal of Neurophysiology, 119, 499–508.

    CAS  Article  Google Scholar 

  32. 32.

    Prielipp, R. C., MacGregor, D. A., Butterworth, J. F., et al. (1996). Pharmacodynamics and pharmacokinetics of milrinone administration to increase oxygen delivery in critically ill patients. Chest, 109, 1291–1301.

    CAS  Article  Google Scholar 

  33. 33.

    Karasawa, F., Okuda, T., Tsutsui, M., et al. (2003). Dopamine stabilizes milrinone-induced changes in heart rate and arterial pressure during anaesthesia with isoflurane. European Journal of Anaesthesiology, 20, 120–123.

    CAS  Article  Google Scholar 

  34. 34.

    van Diepen, S., Katz, J. N., Albert, N. M., et al. (2017). Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation, 136, e232–e268.

    Article  Google Scholar 

  35. 35.

    Jakob Josiassen, Ole Kristian Lerche Helgestad, Jacob Eifer Møller, Jesper Kjaergaard, Henrik Frederiksen Hoejgaard, Henrik Schmidt, Lisette Okkels Jensen, Lene Holmvang, Hanne Berg Ravn, Christian Hassager, Corstiaan den Uil, (2020) Hemodynamic and metabolic recovery in acute myocardial infarction-related cardiogenic shock is more rapid among patients presenting with out-of-hospital cardiac arrest. PLOS ONE 15 (12):e0244294

Download references

Acknowledgements

We would like to acknowledge the skilled and helpful staff at Biomedical Laboratory at Odense University Hospital, Odense, Denmark.

Funding

This work was supported by the Danish Heart Foundation, Abiomed, and the Jørgen Møller Foundation. The funders had no influence on any aspects of current work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jakob Josiassen.

Ethics declarations

Conflict of Interest

Professor Møller has received a research grant from Abiomed. The remaining authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Angela Taylor oversaw the review of this article

Supplementary Information

ESM 1

(DOCX 313 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Josiassen, J., Helgestad, O.K.L., Udesen, N.L.J. et al. Impella RP Versus Pharmacologic Vasoactive Treatment in Profound Cardiogenic Shock due to Right Ventricular Failure. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10131-x

Download citation

Keywords

  • Cardiogenic shock
  • Translational science
  • Ventricular unloading
  • Impella RP
  • Hemodynamics
  • Vasopressor