Skip to main content

A Robust Percutaneous Myocardial Infarction Model in Pigs and Its Effect on Left Ventricular Function

Abstract

In this study, we created a reproducible myocardial infarction (MI) model in pigs characterized by a low mortality rate and significant changes in left ventricular function. After administering an arrhythmia prevention regimen, we created a 90-min balloon-induced percutaneous MI in 42 pigs below the first diagonal branch (D1) of the left anterior descending artery. Echocardiograms were performed before and 14 days after MI induction. Pigs with a > 30% decrease in left ventricular ejection fraction (LVEF) underwent electrophysiological mapping by the NOGA system. Our mortality rate was 4.8%. The incidence of ventricular fibrillation (VF) was 28.6%; all VF events were successfully resuscitated. At day 14, echocardiography and NOGA mapping confirmed transmural scar. LVEF decreased 41% from baseline. Radial and circumferential strain significantly decreased in the LAD distal to D1, and the LV showed dyssynchrony. An anti-arrhythmia regimen decreased mortality significantly, and our model induced dramatic functional changes.

Graphical abstract

The basic procedures of the model included an arrhythmia prevention protocol and myocardial infarction creation, which effectively decreased mortality and provided a robust change in left ventricular (LV) function after 14 days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACT:

Activated clotting time

LV:

Left ventricular

LVEDV:

Left ventricular end-diastolic volume

LVEF:

Left ventricular ejection fraction

LVESV:

Left ventricular end-systolic volume

MI:

Myocardial infarction

PVC:

Premature ventricular contraction

RAO:

Right anterior oblique

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. 1.

    Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S., AlKatheeri, R., Alblooshi, F. M. K., Almatrooshi, M., Alzaabi, M. E. H., Al Darmaki, R. S., & Lootah, S. (2020). Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus., 12(7), e9349.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    McCall, F. C., Telukuntla, K. S., Karantalis, V., Suncion, V. Y., Heldman, A. W., Mushtaq, M., Williams, A. R., & Hare, J. M. (2012). Myocardial infarction and intramyocardial injection models in swine. Nature Protocols, 7(8), 1479–1496.

    CAS  Article  Google Scholar 

  3. 3.

    Crisostomo, V., Maestre, J., Maynar, M., Sun, F., Baez-Diaz, C., Uson, J., & Sanchez-Margallo, F. M. (2013). Development of a closed chest model of chronic myocardial infarction in swine: Magnetic resonance imaging and pathological evaluation. ISRN Cardiology, 2013, 781762.

    Article  Google Scholar 

  4. 4.

    Lukacs, E., Magyari, B., Toth, L., Petrasi, Z., Repa, I., Koller, A., & Horvath, I. (2012). Overview of large animal myocardial infarction models (review). Acta Physiologica Hungarica, 99(4), 365–381.

    CAS  Article  Google Scholar 

  5. 5.

    Li, T., Wei, X., Watkins, A. C., Sanchez, P. G., Wu, Z. J., & Griffith, B. P. (2013). Prophylactic amiodarone and lidocaine improve survival in an ovine model of large size myocardial infarction. The Journal of Surgical Research, 185(1), 152–158.

    CAS  Article  Google Scholar 

  6. 6.

    Sattler, S. M., Skibsbye, L., Linz, D., Lubberding, A. F., Tfelt-Hansen, J., & Jespersen, T. (2019). Ventricular arrhythmias in first acute myocardial infarction: Epidemiology, mechanisms, and interventions in large animal models. Frontiers in Cardiovascular Medicine, 6, 158.

    CAS  Article  Google Scholar 

  7. 7.

    Chen, Y., Shao, D. B., Zhang, F. X., Zhang, J., Yuan, W., Man, Y. L., Du, W., Liu, B. X., Wang, D. W., Li, X. R., & Cao, K. J. (2013). Establishment and evaluation of a swine model of acute myocardial infarction and reperfusion-ventricular fibrillation-cardiac arrest using the interventional technique. Journal of the Chinese Medical Association, 76(9), 491–496.

    Article  Google Scholar 

  8. 8.

    Krombach, G. A., Kinzel, S., Mahnken, A. H., Gunther, R. W., & Buecker, A. (2005). Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Investigative Radiology, 40(1), 14–18.

    PubMed  Google Scholar 

  9. 9.

    Suzuki, Y., Lyons, J. K., Yeung, A. C., & Ikeno, F. (2008). In vivo porcine model of reperfused myocardial infarction: In situ double staining to measure precise infarct area/area at risk. Catheterization and Cardiovascular Interventions, 71(1), 100–107.

    Article  Google Scholar 

  10. 10.

    Sattler, S. M., Lubberding, A. F., Skibsbye, L., Jabbari, R., Wakili, R., Jespersen, T., & Tfelt-Hansen, J. (2019). Amiodarone treatment in the early phase of acute myocardial infarction protects against ventricular fibrillation in a porcine model. Journal of Cardiovascular Translational Research, 12(4), 321–330.

    Article  Google Scholar 

  11. 11.

    Dubois, C., Liu, X., Claus, P., Marsboom, G., Pokreisz, P., Vandenwijngaert, S., Depelteau, H., Streb, W., Chaothawee, L., Maes, F., et al. (2010). Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. Journal of the American College of Cardiology, 55(20), 2232–2243.

    Article  Google Scholar 

  12. 12.

    Tops, L. F., Suffoletto, M. S., Bleeker, G. B., Boersma, E., van der Wall, E. E., Gorcsan 3rd, J., Schalij, M. J., & Bax, J. J. (2007). Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 50(12), 1180–1188.

    Article  Google Scholar 

  13. 13.

    Sim, D. S., Kim, W., Lee, K. H., Song, H. C., Kim, J. H., Park, D. S., Lim, K. S., Woo, J. S., Hong, Y. J., Ahn, Y., et al. (2018). Cardioprotective effect of substance P in a porcine model of acute myocardial infarction. International Journal of Cardiology, 271, 228–232.

    Article  Google Scholar 

  14. 14.

    Lubberding, A. F., Sattler, S. M., Flethoj, M., Tfelt-Hansen, J., & Jespersen, T. (2020). Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 318(2), H391–H400.

    CAS  Article  Google Scholar 

  15. 15.

    Perez de Prado, A., Cuellas-Ramon, C., Regueiro-Purrinos, M., Gonzalo-Orden, J. M., Perez-Martinez, C., Altonaga, J. R., Garcia-Iglesias, M. J., Orden-Recio, M. A., Garcia-Marin, J. F., & Fernandez-Vazquez, F. (2009). Closed-chest experimental porcine model of acute myocardial infarction-reperfusion. Journal of Pharmacological and Toxicological Methods, 60(3), 301–306.

    CAS  Article  Google Scholar 

  16. 16.

    Li, X., Shao, D., Wang, G., Jiang, T., Wu, H., Gu, B., Cao, K., Zhang, J., Qi, L., & Chen, Y. (2014). Effects of different LAD-blocked sites on the development of acute myocardial infarction and malignant arrhythmia in a swine model. Journal of Thoracic Disease, 6(9), 1271–1277.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Koudstaal S, Jansen of Lorkeers S, Gho J, van Hout G, Jansen M, Gründeman P, Pasterkamp G, Doevendans P, Hoefer I, Chamuleau S. (2014). Myocardial infarction and functional outcome assessment in pigs. Journal of Visual Experiments : JoVE.

  18. 18.

    Abd-Elmoniem, K. Z., Tomas, M. S., Sasano, T., Soleimanifard, S., Vonken, E. J., Youssef, A., Agarwal, H., Dimaano, V. L., Calkins, H., Stuber, M., et al. (2012). Assessment of distribution and evolution of mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 14, 1.

    Article  Google Scholar 

  19. 19.

    Soleimanifard, S., Abd-Elmoniem, K. Z., Sasano, T., Agarwal, H. K., Abraham, M. R., Abraham, T. P., & Prince, J. L. (2012). Three-dimensional regional strain analysis in porcine myocardial infarction: A 3T magnetic resonance tagging study. Journal of Cardiovascular Magnetic Resonance, 14, 85.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Rebecca Bartow, PhD, of the Scientific Publications Department at the Texas Heart Institute for her editorial contributions.

Author information

Affiliations

Authors

Contributions

KL: Operator, study design, data analysis, paper writing

LW: Operator, study design, paper writing

AMR: Operator assistant, data collecting, and organizing

DV: Study design, data collecting, and organizing

EP: Operator, Study design, paper writing, and review

Corresponding author

Correspondence to Emerson Perin.

Ethics declarations

Ethics Approval and Informed Consent

No human studies were carried out by the authors for this article. All animals used and procedures were approved by the Texas Heart Institute’s institutional Animal Care and Use Committee (Protocol number: 2018-25,2018-38,2020-02).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Junjie Xiao oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K., Wagner, L., Moctezuma-Ramirez, A. et al. A Robust Percutaneous Myocardial Infarction Model in Pigs and Its Effect on Left Ventricular Function. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10123-x

Download citation

Keywords

  • Myocardial infarction
  • Pig model
  • Preclinical model
  • Left ventricular function