Skip to main content

Advertisement

Log in

Dickkopf 3: a Novel Target Gene of miR-25-3p in Promoting Fibrosis-Related Gene Expression in Myocardial Fibrosis

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Increasing evidence has shown that microRNAs (miRNAs) participate in cardiac fibrosis. We aimed to elucidate the effect of miRNA miR-25-3p on cardiac fibrosis. MiRNA microarray was used to profile miRNAs in the myocardium of angiotensin-II (Ang-II)-infused mice. Effect of miR-25-3p on expression of fibrosis-related genes, including Col1a1, Col3a1, and Acta2, was investigated both in vitro and in vivo. MiR-25-3p was shown increased in the myocardium of Ang-II-infused mice and patients with heart failure. MiR-25-3p enhanced fibrosis-related gene expression in mouse cardiac fibroblasts (mCFs) and in the myocardium of Ang-II-infused mice. Dickkopf 3 (Dkk3) was identified as a target gene of miR-25-3p, and Dkk3 could ameliorate Smad3 activation and fibrosis-related gene expression via enhancing Smad7 expression in mCFs. Additionally, NF-κB signal was proven to mediate upregulation of miR-25-3p in cardiac fibrosis. Our findings suggest that miR-25-3p enhances cardiac fibrosis by suppressing Dkk3 to activate Smad3 and fibrosis-related gene expression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miR:

microRNA

Ang-II:

Angiotensin-II

Dkk3:

Dickkopf 3

mCFs:

Mouse cardiac fibroblasts

HF:

Heart failure

TAC:

Transaortic constriction

Smad7:

SMAD family member 7

LV:

Left ventricular

EF:

Ejection fraction

FS:

Fractional shortening

CVF:

Collagen volume fraction

NMVCs:

Neonatal mouse ventricular cardiomyocytes

RT-qPCR:

Quantitative reverse-transcription PCR

FL:

Firefly luciferase

RL:

Renilla luciferase

ChIP:

Chromatin immunoprecipitation

EdU:

5-Ethynyl-2′-deoxyuridine

3′-UTR:

3′-untranslation region

References

  1. Dzeshka, M. S., Lip, G. Y., Snezhitskiy, V., & Shantsila, E. (2015). Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. Journal of the American College of Cardiology, 66, 943–959.

    Article  Google Scholar 

  2. Fan, Z. Z., & Guan, J. J. (2016). Antifibrotic therapies to control cardiac fibrosis. Biomaterials Research, 20, 13.

    Article  Google Scholar 

  3. Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 25, 7469–7481.

    Article  CAS  Google Scholar 

  4. Monaghan, A. P., Kioschis, P., Wu, W., Zuniga, A., Bock, D., Poustka, A., et al. (1999). Dickkopf genes are coordinately expressed in mesodermal lineages. Mechanisms of Development, 87, 45–56.

    Article  CAS  Google Scholar 

  5. Mallarino, R., Campas, O., Fritz, J. A., Burns, K. J., Weeks, O. G., Brenner, M. P., et al. (2012). Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proceedings National Academy of Sciences United States of America, 109, 16,222–16,227.

    Article  CAS  Google Scholar 

  6. Abarzua, F., Sakaguchi, M., Takaishi, M., Nasu, Y., Kurose, K., Ebara, S., et al. (2005). Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Research, 65, 9617–9622.

    Article  CAS  Google Scholar 

  7. Kawano, Y., Kitaoka, M., Hamada, Y., Walker, M. M., Waxman, J., & Kypta, R. M. (2006). Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene, 25, 6528–6537.

    Article  CAS  Google Scholar 

  8. Papatriantafyllou, M., Moldenhauer, G., Ludwig, J., Tafuri, A., Garbi, N., Hollmann, G., et al. (2012). Dickkopf-3, an immune modulator in peripheral CD8 T-cell tolerance. Proceedings National Academy of Sciences United States of America, 109, 1631–1636.

    Article  CAS  Google Scholar 

  9. Zhang, Y., Liu, Y., Zhu, X. H., Zhang, X. D., Jiang, D. S., Bian, Z. Y., et al. (2014). Dickkopf-3 attenuates pressure overload-induced cardiac remodeling. Cardiovascular Research, 102, 35–45.

    Article  CAS  Google Scholar 

  10. Zhai, C. G., Xu, Y. Y., Tie, Y. Y., Zhang, Y., Chen, W. Q., Ji, X. P., et al. (2018). DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3beta/beta-catenin pathways. Journal of Molecular and Cellular Cardiology, 114, 243–252.

    Article  CAS  Google Scholar 

  11. Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development, 15, 563–568.

    Article  CAS  Google Scholar 

  12. Li, Y., Liang, Y., Zhu, Y., Zhang, Y., & Bei, Y. (2018). Noncoding RNAs in cardiac hypertrophy. Journal of Cardiovascular Translational Research, 11, 439–449.

    Article  Google Scholar 

  13. Henning, R. J. (2020). Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-020-10040-5.

  14. Bauersachs, J. (2010). Regulation of myocardial fibrosis by microRNAs. Journal of Cardiovascular Pharmacology, 56, 454–459.

    Article  CAS  Google Scholar 

  15. Yang, Z. Z., Xiao, Z., Guo, H. M., Fang, X. H., Liang, J. N., Zhu, J. N., et al. (2019). Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts. Journal of Cellular and Molecular Medicine, 23, 3246–3256.

    Article  CAS  Google Scholar 

  16. Zhu, W. S., Tang, C. M., Xiao, Z., Zhu, J. N., Lin, Q. X., Fu, Y. H., et al. (2016). Targeting EZH1 and EZH2 contributes to the suppression of fibrosis-associated genes by miR-214-3p in cardiac myofibroblasts. Oncotarget, 7, 78,331–78,342.

    Article  Google Scholar 

  17. Jeong, D., Yoo, J., Lee, P., Kepreotis, S. V., Lee, A., Wahlquist, C., et al. (2018). miR-25 tough decoy enhances cardiac function in heart failure. Molecular Therapy, 26, 718–729.

    Article  CAS  Google Scholar 

  18. Liu, Q., Wang, Y., Yang, T., & Wei, W. (2016). Protective effects of miR-25 against hypoxia/reoxygenation-induced fibrosis and apoptosis of H9c2 cells. International Journal of Molecular Medicine, 38, 1225–1234.

    Article  CAS  Google Scholar 

  19. Genz, B., Coleman, M. A., Irvine, K. M., Kutasovic, J. R., Miranda, M., Gratte, F. D., et al. (2019). Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-beta-induced collagen expression in hepatic stellate cells. Scientific Reports, 9, 8541.

    Article  Google Scholar 

  20. Yuan, W. W., Tang, C. M., Zhu, W. S., Zhu, J. N., Lin, Q. X., Fu, Y. H., et al. (2016). CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Molecular and Cellular Biochemistry, 412, 289–296.

    Article  CAS  Google Scholar 

  21. Baylin, S. B., & Schuebel, K. E. (2007). Genomic biology: the epigenomic era opens. Nature, 448, 548–549.

    Article  CAS  Google Scholar 

  22. Wahlquist, C., Jeong, D., Rojas-Muñoz, A., Kho, C., Lee, A., Mitsuyama, S., et al. (2014). Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 508, 531–535.

    Article  CAS  Google Scholar 

  23. Li, H., Xie, Y., Liu, Y., Qi, Y., Tang, C., Li, X., et al. (2018). Alteration in microRNA-25 expression regulate cardiac function via renin secretion. Experimental Cell Research, 365, 119–128.

    Article  CAS  Google Scholar 

  24. Dirkx, E., Gladka, M. M., Philippen, L. E., Armand, A. S., Kinet, V., Leptidis, S., et al. (2013). Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 15, 1282–1293.

    Article  CAS  Google Scholar 

  25. Wei, L. H., Huang, X. R., Zhang, Y., Li, Y. Q., Chen, H. Y., Yan, B. P., et al. (2013). Smad7 inhibits angiotensin II-induced hypertensive cardiac remodeling. Cardiovascular Research, 99, 665–673.

    Article  CAS  Google Scholar 

  26. He, X., Gao, X., Peng, L., Wang, S., Zhu, Y., Ma, H., et al. (2011). Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circulation Research, 108, 164–175.

    Article  CAS  Google Scholar 

  27. Qi, H. P., Wang, Y., Zhang, Q. H., Guo, J., Li, L., Cao, Y. G., et al. (2015). Activation of peroxisome proliferator-activated receptor γ (PPARγ) through NF-κB/Brg1 and TGF-β1 pathways attenuates cardiac remodeling in pressure-overloaded rat hearts. Cellular Physiology and Biochemistry, 35, 899–912.

    Article  CAS  Google Scholar 

  28. Cau, S. B., Guimaraes, D. A., Rizzi, E., Ceron, C. S., Gerlach, R. F., & Tanus-Santos, J. E. (2015). The nuclear factor kappa B inhibitor pyrrolidinedithiocarbamate prevents cardiac remodeling and matrix metalloproteinase-2 up-regulation in renovascular hypertension. Basic & Clinical Pharmacology & Toxicology, 117, 234–241.

    CAS  Google Scholar 

  29. Li, H., Xu, J. D., Fang, X. H., Zhu, J. N., Yang, J., Pan, R., et al. (2020). Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovascular Research, 116, 1323–1334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (82070254 and 81770264 to Z.-X. Shan), a High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201902 to Z.-X. Shan), and a Guangzhou Science and Technology Program project (202002030013 to X.-H. Fang).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Ni Zeng and Zhi-Xin Shan. Performed the experiments: Ni Zeng, Yi-Hong Wen, Rong Pan, An-Zhi Zhao, Jing Yang, and Yu-Min Yan. Managed data: Ni Zeng and Xian-Hong Fang. Analyzed the data: Yi-Hong Wen, Jie-Ning Zhu, and Zhi-Xin Shan. Contributed reagents/materials/analysis tools: Yu-Min Yan and Xian-Hong Fang. Funding acquisition: Xian-Hong Fang and Zhi-Xin Shan. Wrote the paper: Zhi-Xin Shan. All authors have read and agreed to the final version of manuscript.

Corresponding authors

Correspondence to Xian-Hong Fang or Zhi-Xin Shan.

Ethics declarations

Competing Interests

The authors declare that there are no conflicts of interest.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, N., Wen, YH., Pan, R. et al. Dickkopf 3: a Novel Target Gene of miR-25-3p in Promoting Fibrosis-Related Gene Expression in Myocardial Fibrosis. J. of Cardiovasc. Trans. Res. 14, 1051–1062 (2021). https://doi.org/10.1007/s12265-021-10116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10116-w

Keywords

Navigation