Skip to main content

Advertisement

Log in

Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac rupture is a fatal complication of acute myocardial infarction (MI), associated with increased inflammation and damaged extracellular matrix. C57BL/6 J wild type (WT) and Pde5a knockout (Pde5a−/−) mice were selected to establish MI model. The rupture rate of Pde5a−/− mice was significantly reduced (P < 0.01) within 7 days post MI. The cardiac function of Pde5a−/− mice was better than WT mice both at day 3 and 7 post MI. Immunohistochemical staining and flow cytometry showed neutrophils and macrophages were decreased in Pde5a−/− mouse hearts. Inflammatory factors expression such as IL-1β, IL-6, IL-8, Mcp-1, TNF-α significantly decreased in Pde5a−/− mice post MI. Moreover, western blot showed the inhibition of inflammatory response was accompanied by down-regulation of intercellular adhesion molecule-1(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) in Pde5a−/− mice. Knockout of Pde5a reduced inflammatory cells infiltration by down-regulating the expression of ICAM-1 and VCAM-1, and prevented early cardiac rupture after MI. All authors declare that they have no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, S. A., Richardson, W. J., & Holmes, J. W. (2016). Modifying the mechanics of healing infarcts: Is better the enemy of good? Journal of Molecular and Cellular Cardiology, 93, 115–124.

    Article  CAS  PubMed  Google Scholar 

  2. Leitman, M., Tsatskin, L., Hendler, A., Blatt, A., Peleg, E., & Vered, Z. (2016). Cardiac rupture: New features of the old disease. Cardiology, 133(4), 257–261.

    Article  CAS  PubMed  Google Scholar 

  3. Gao, X. M., White, D. A., Dart, A. M., & Du, X. J. (2012). Post-infarct cardiac rupture: Recent insights on pathogenesis and therapeutic interventions. Pharmacology & Therapeutics, 134(2), 156–179.

    Article  CAS  Google Scholar 

  4. Reynolds, H. R., & Hochman, J. S. (2010). Heartbreak. European Heart Journal, 31(12), 1433–1435.

    Article  PubMed  Google Scholar 

  5. Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology, 11(5), 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao, X. M., Xu, Q., Kiriazis, H., Dart, A. M., & Du, X. J. (2005). Mouse model of post-infarct ventricular rupture: Time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovascular Research, 65(2), 469–477.

    Article  CAS  PubMed  Google Scholar 

  7. Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58(2), 88–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hristov, M., & Weber, C. (2015). Myocardial infarction and inflammation: Lost in the biomarker labyrinth. Circulation Research, 116(5), 781–783.

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Mordechai, T., Holbova, R., Landa-Rouben, N., Harel-Adar, T., Feinberg, M. S., Abd, E. I., et al. (2013). Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology, 62(20), 1890–1901.

    Article  PubMed  Google Scholar 

  10. Tardif, J. C., Kouz, S., Waters, D. D., Bertrand, O. F., Diaz, R., Maggioni, A. P., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. The New England journal of medicine.

  11. Gong, W., Duan, Q., Cai, Z., Chen, C., Ni, L., Yan, M., et al. (2013). Chronic inhibition of cGMP-specific phosphodiesterase 5 suppresses endoplasmic reticulum stress in heart failure. British Journal of Pharmacology, 170(7), 1396–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong, W., Yan, M., Chen, J., Chaugai, S., Chen, C., & Wang, D. (2014). Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling. Frontiers of medicine, 8(4), 445–455.

    Article  PubMed  Google Scholar 

  13. Lux, A., Pokreisz, P., Swinnen, M., Caluwe, E., Gillijns, H., Szelid, Z., et al. (2016). Concomitant Phosphodiesterase 5 inhibition enhances myocardial protection by inhaled nitric oxide in ischemia-reperfusion injury. The Journal of Pharmacology and Experimental Therapeutics, 356(2), 284–292.

    Article  CAS  PubMed  Google Scholar 

  14. Li, L., Zhao, D., Jin, Z., Zhang, J., Paul, C., & Wang, Y. (2015). Phosphodiesterase 5a inhibition with adenoviral short hairpin RNA benefits infarcted heart partially through activation of Akt Signaling pathway and reduction of inflammatory cytokines. PLoS One, 10(12), e0145766.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heymans, S., Luttun, A., Nuyens, D., Theilmeier, G., Creemers, E., Moons, L., et al. (1999). Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine, 5(10), 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  16. Latet, S. C., Hoymans, V. Y., Van Herck, P. L., & Vrints, C. J. (2015). The cellular immune system in the post-myocardial infarction repair process. International Journal of Cardiology, 179, 240–247.

    Article  PubMed  Google Scholar 

  17. Matsumura, S., Iwanaga, S., Mochizuki, S., Okamoto, H., Ogawa, S., & Okada, Y. (2005). Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. The Journal of Clinical Investigation, 115(3), 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong, W., Ma, Y., Li, A., Shi, H., & Nie, S. (2018). Trimetazidine suppresses oxidative stress, inhibits MMP-2 and MMP-9 expression, and prevents cardiac rupture in mice with myocardial infarction. Cardiovascular Therapeutics, 36(5), e12460.

    Article  PubMed  Google Scholar 

  19. Jia, L. X., Qi, G. M., Liu, O., Li, T. T., Yang, M., Cui, W., et al. (2013). Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovascular Drugs and Therapy, 27(6), 521–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hofmann, U., Beyersdorf, N., Weirather, J., Podolskaya, A., Bauersachs, J., Ertl, G., et al. (2012). Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation, 125(13), 1652–1663.

    Article  CAS  PubMed  Google Scholar 

  21. Figueras, J., Alcalde, O., Barrabés, J. A., Serra, V., Alguersuari, J., Cortadellas, J., et al. (2008). Changes in hospital mortality rates in 425 patients with acute ST-elevation myocardial infarction and cardiac rupture over a 30-year period. Circulation, 118(25), 2783–2789.

    Article  PubMed  Google Scholar 

  22. Bueno, H., Martínez-Sellés, M., Pérez-David, E., & López-Palop, R. (2005). Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. European Heart Journal, 26(17), 1705–1711.

    Article  CAS  PubMed  Google Scholar 

  23. Fang, L., Gao, X. M., Moore, X. L., Kiriazis, H., Su, Y., Ming, Z., et al. (2007). Differences in inflammation, MMP activation and collagen damage account for gender difference in murine cardiac rupture following myocardial infarction. Journal of Molecular and Cellular Cardiology, 43(5), 535–544.

    Article  CAS  PubMed  Google Scholar 

  24. Neumann, F. J., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A. P., Benedetto, U., et al. (2019). 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 14(14), 1435–1534.

    Article  Google Scholar 

  25. Ma, Y., de Castro, B. L. E., Toba, H., Iyer, R. P., Hall, M. E., Winniford, M. D., et al. (2014). Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Archiv : European journal of physiology, 466(6), 1113–1127.

    CAS  PubMed  Google Scholar 

  26. Yabluchanskiy, A., Ma, Y., Iyer, R. P., Hall, M. E., & Lindsey, M. L. (2013). Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda, Md), 28(6), 391–403.

    CAS  Google Scholar 

  27. Chow, A. K., Cena, J., & Schulz, R. (2007). Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. British Journal of Pharmacology, 152(2), 189–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yabluchanskiy, A., Ma, Y., DeLeon-Pennell, K. Y., Altara, R., Halade, G. V., Voorhees, A. P., et al. (2016). Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. The journals of gerontology Series A, Biological sciences and medical sciences, 71(4), 475–483.

    Article  CAS  PubMed  Google Scholar 

  29. DeLeon-Pennell, K. Y., Tian, Y., Zhang, B., Cates, C. A., Iyer, R. P., Cannon, P., et al. (2016). CD36 is a matrix Metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac Remodeling. Circulation Cardiovascular genetics, 9(1), 14–25.

    Article  CAS  PubMed  Google Scholar 

  30. Sanders, L. N., Schoenhard, J. A., Saleh, M. A., Mukherjee, A., Ryzhov, S., McMaster Jr., W. G., et al. (2016). BMP antagonist gremlin 2 limits inflammation after myocardial infarction. Circulation Research, 119(3), 434–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian, G., Jin, R. J., Fu, Z. H., Yang, Y. Q., Su, H. L., Dong, W., et al. (2017). Development and validation of clinical risk score to predict the cardiac rupture in patients with STEMI. The American Journal of Emergency Medicine, 35(4), 589–593.

    Article  PubMed  Google Scholar 

  32. Qian, G., Wu, C., Chen, Y. D., Tu, C. C., Wang, J. W., & Qian, Y. A. (2014). Predictive factors of cardiac rupture in patients with ST-elevation myocardial infarction. Journal of Zhejiang University Science B, 15(12), 1048–1054.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ipek, G., Onuk, T., Karatas, M. B., Güngör, B., Atasoy, I., Murat, A., et al. (2015). Relationship between neutrophil-to-lymphocyte ratio and left ventricular Free Wall rupture in acute myocardial infarction. Cardiology, 132(2), 105–110.

    Article  PubMed  Google Scholar 

  34. Samanta, D., & Almo, S. C. (2015). Nectin family of cell-adhesion molecules: Structural and molecular aspects of function and specificity. Cellular and molecular life sciences : CMLS, 72(4), 645–658.

    Article  CAS  PubMed  Google Scholar 

  35. Roebuck, K. A., & Finnegan, A. (1999). Regulation of intercellular adhesion molecule-1(CD54) gene expression. Journal of Leukocyte Biology, 66(6), 876–888.

    Article  CAS  PubMed  Google Scholar 

  36. Borchers, A. T., Shimoda, S., Bowlus, C., Keen, C. L., & Gershwin, M. E. (2009). Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Seminars in Immunopathology, 31(3), 309–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H., & Lee, S. (2018). Emerging roles of vascular cell adhesion Molecule-1(VCAM-1) in immunological disorders and Cancer. International Journal of Molecular Sciences, 19(4).

  38. Schlesinger, M., & Bendas, G. (2015). Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. International Journal of Cancer, 136(11), 2504–2514.

    Article  CAS  PubMed  Google Scholar 

  39. Park, J. B., Suh, M., Park, J. Y., Park, J. K., Kim, Y. I., Kim, H., et al. (2019). Assessment of inflammation in pulmonary artery hypertension by (68)Ga-Mannosylated human serum albumin. American journal of respiratory and critical care medicine.

  40. Sugimoto, M., Zhang, X., Ueda, N., Tsunemori, H., Taoka, R., Hayashida, Y., et al. (2019). A phosphodiesterase 5 inhibitor, tadalafil, suppresses stromal predominance and inflammation in a rat model of nonbacterial prostatitis. BMC Urology, 19(1), 99.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yasmeen, S., Akram, B. H., Hainsworth, A. H., & Kruuse, C. (2019). Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cellular signalling, 61, 108–119.

    Article  CAS  PubMed  Google Scholar 

  42. Pokreisz, P., Vandenwijngaert, S., Bito, V., Van den Bergh, A., Lenaerts, I., Busch, C., et al. (2009). Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation, 119(3), 408–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corinaldesi, C., Di Luigi, L., Lenzi, A., & Crescioli, C. (2016). Phosphodiesterase type 5 inhibitors: Back and forward from cardiac indications. Journal of Endocrinological Investigation, 39(2), 143–151.

    Article  CAS  PubMed  Google Scholar 

  44. Venneri, M. A., Giannetta, E., Panio, G., De Gaetano, R., Gianfrilli, D., Pofi, R., et al. (2015). Chronic inhibition of PDE5 limits pro-inflammatory monocyte-macrophage polarization in Streptozotocin-induced diabetic mice. PLoS One, 10(5), e0126580.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Penna, G., Fibbi, B., Amuchastegui, S., Cossetti, C., Aquilano, F., Laverny, G., et al. (2009). Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. Journal of immunology (Baltimore, Md : 1950), 182(7), 4056–4064.

    Article  CAS  Google Scholar 

  46. Scolletta, S., Colletti, M., Di Luigi, L., & Crescioli, C. (2013). Vitamin D receptor agonists target CXCL10: New therapeutic tools for resolution of inflammation. Mediators of Inflammation, 2013, 876319.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Di Luigi, L., Corinaldesi, C., Colletti, M., Scolletta, S., Antinozzi, C., Vannelli, G. B., et al. (2016). Phosphodiesterase type 5 inhibitor sildenafil decreases the Proinflammatory chemokine CXCL10 in human Cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation, 39(3), 1238–1252.

    PubMed  Google Scholar 

  48. Varma, A., Das, A., Hoke, N. N., Durrant, D. E., Salloum, F. N., & Kukreja, R. C. (2012). Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One, 7(9), e45243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Colombo, G., Colombo, M. D., Schiavon, L. L., & d'Acampora, A. J. (2013). Phosphodiesterase 5 as target for adipose tissue disorders. Nitric Oxide : Biology and Chemistry, 35, 186–192.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (81970292, 81600213, 81670222 and 81700262). Beijing Natural Science Foundation (7191002). Beijing Hospitals Authority Youth Program (QML20190603). Capital’s Funds for Health Improvement and Research (2018–1-2061). CS Optimizing Antithrombotic Research Fund (BJUHFCSOARF201901–08). Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201710), Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20180601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Gong or Shaoping Nie.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ma, Y., Yan, Y. et al. Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction. J. of Cardiovasc. Trans. Res. 14, 816–823 (2021). https://doi.org/10.1007/s12265-021-10102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10102-2

Keywords

Navigation