Skip to main content
Log in

Predictive Value of Circulating microRNA-134 Levels for Early Diagnosis of Acute Pulmonary Embolism: Meta-analysis

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Acute pulmonary embolism (APE) is a common sudden venous thromboembolism with high rates of morbidity and mortality. Several studies have concluded that microRNA-134 could be a potential biomarker for APE. However, the sensitivity of these studies varies widely. This study aimed to evaluate the diagnostic value of circulating microRNA-134 levels for APE. Four databases were searched to retrieve articles focusing on microRNA-134 detection in APE diagnosis. The Quality Assessment of Diagnostic Accuracy Studies-2 was used to evaluate the quality of the included literature. This meta-analysis included seven studies and 383 subjects. The microRNA-134 levels in APE patients were higher than those in controls (SMD = 2.84, z = 3.69, p < 0.001). The pooled sensitivity, specificity, and diagnostic odds ratio were 0.86 (0.72–0.94), 0.75 (0.66–0.82), and 19 (7–51), respectively. The positive and negative likelihood ratios were 3.4 (2.4–4.8) and 0.18 (0.08–0.40), respectively. The area under the summary receiver operating characteristic curve was 0.81 (0.77–0.84). Circulating microRNA-134 may be a new biomarker for the diagnosis of APE, but more tests and studies are needed to further explore and prove this. Trial registration number: PROSPERO registration #CRD42020184072

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APE:

Acute pulmonary embolism

NSTEMI:

Non-ST segment elevation myocardial infarction

SROC:

Summary receiver operating characteristic

AUC:

The area under the summary receiver operating characteristic curve

SEN:

Sensitivity

SPE:

Specificity

PLR:

Positive likelihood ratio

NLR:

Negative likelihood ratio

DOR:

Diagnostic odds ratio

References

  1. Konstantinides, S. V., Barco, S., Lankeit, M., & Meyer, G. (2016). Management of pulmonary embolism: an update. Journal of the American College of Cardiology, 67(8), 976–990. https://doi.org/10.1016/j.jacc.2015.11.061.

    Article  PubMed  Google Scholar 

  2. Giordano, N. J., Jansson, P. S., Young, M. N., Hagan, K. A., & Kabrhel, C. (2017). Epidemiology, pathophysiology, stratification, and natural history of pulmonary embolism. Techniques in Vascular and Interventional Radiology, 20(3), 135–140. https://doi.org/10.1053/j.tvir.2017.07.002.

    Article  PubMed  Google Scholar 

  3. Douma, R. A., Kamphuisen, P. W., & Buller, H. R. (2010). Acute pulmonary embolism. Part 1. Epidemiology and diagnosis. Nature Reviews. Cardiology, 7(10), 585–596. https://doi.org/10.1038/nrcardio.2010.106.

    Article  PubMed  Google Scholar 

  4. Doherty, S. (2017). Pulmonary embolism: an update. Australian Family Physician, 46(11), 816–820.

    PubMed  Google Scholar 

  5. Righini, M., & Robert-Ebadi, H. (2018). Diagnosis of acute pulmonary embolism. Hamostaseologie, 38(1), 11–21. https://doi.org/10.5482/HAMO-17-07-0023.

    Article  PubMed  Google Scholar 

  6. Lin, Y. T., Tsai, I. C., Tsai, W. L., Lee, T., Chen, M. C., Lin, P. C., et al. (2010). Comprehensive evaluation of CT pulmonary angiography for patients suspected of having pulmonary embolism. The International Journal of Cardiovascular Imaging, 26(Suppl 1), 111–120. https://doi.org/10.1007/s10554-009-9573-8.

    Article  PubMed  Google Scholar 

  7. Stein, P. D., Woodard, P. K., Weg, J. G., Wakefield, T. W., Tapson, V. F., Sostman, H. D., et al. (2007). Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II investigators. Radiology, 242(1), 15–21. https://doi.org/10.1148/radiol.2421060971.

    Article  PubMed  Google Scholar 

  8. Meyer, G. (2014). Effective diagnosis and treatment of pulmonary embolism: improving patient outcomes. Archives of Cardiovascular Diseases, 107(6–7), 406–414. https://doi.org/10.1016/j.acvd.2014.05.006.

    Article  PubMed  Google Scholar 

  9. Crawford, F., Andras, A., Welch, K., Sheares, K., Keeling, D., & Chappell, F. M. (2016). D-dimer test for excluding the diagnosis of pulmonary embolism. Cochrane Database of Systematic Reviews, 8, CD010864. https://doi.org/10.1002/14651858.CD010864.pub2.

    Article  Google Scholar 

  10. Konstantinides, S. V., Meyer, G., Becattini, C., Bueno, H., Geersing, G. J., Harjola, V. P., et al. (2019). 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). The European Respiratory Journal, 54(3). https://doi.org/10.1183/13993003.01647-2019.

  11. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  Google Scholar 

  12. Kessler, T., Erdmann, J., Vilne, B., Bruse, P., Kurowski, V., Diemert, P., et al. (2016). Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. Journal of Translational Medicine, 14(1), 120. https://doi.org/10.1186/s12967-016-0886-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng, H. Y., Li, G., Luo, J., Wang, Z. Q., Yang, X. Y., Lin, Y. D., et al. (2016). MicroRNAs are novel non-invasive diagnostic biomarkers for pulmonary embolism: a meta-analysis. Journal of Thoracic Disease, 8(12), 3580–3587. https://doi.org/10.21037/jtd.2016.12.98.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xiang, Q., Zhang, H. X., Wang, Z., Liu, Z. Y., Xie, Q. F., Hu, K., et al. (2019). The predictive value of circulating microRNAs for venous thromboembolism diagnosis: a systematic review and diagnostic meta-analysis. Thrombosis Research, 181, 127–134. https://doi.org/10.1016/j.thromres.2019.07.024.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, J., Jing, Z. C., Ellinor, P. T., Liang, D., Zhang, H., Liu, Y., et al. (2011). MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. Journal of Translational Medicine, 9, 159. https://doi.org/10.1186/1479-5876-9-159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y., Zhao, Z., Zhang, Y., Jiang, X., & Duo, J. (2017). Plasma miRNA-134 is a diagnostic biomarker for acute pulmonary embolism in middle and high altitude areas. Biomedical Research-India, 28(12), 5494–5498.

    CAS  Google Scholar 

  17. Haizhen, M. (2018). The expressions of plasma microRNA-134 for the acute pulmonary embolism at high altitude area. Master: Qinghai University.

    Google Scholar 

  18. Heng, Z. (2016). The diagnostic value of microRNA-134 for the acute pulmonary embolism at middle altitude. Master: Qinghai University.

    Google Scholar 

  19. Bang, Z., Ruchang, C., & Xiaodan, Z. (2018). Detection of serum miRNAs markers and clinical value of miR-134 in patients with acute pulmonary embolism. Clinical Education of General Practice, 16(6), 617–620.

    Google Scholar 

  20. McInnes, M. D. F., Moher, D., Thombs, B. D., McGrath, T. A., Bossuyt, P. M., & the, P.-D. T. A. G., et al. (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA statement. JAMA, 319(4), 388–396. https://doi.org/10.1001/jama.2017.19163.

    Article  PubMed  Google Scholar 

  21. Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., et al. (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  22. Deville, W. L., Buntinx, F., Bouter, L. M., Montori, V. M., de Vet, H. C., van der Windt, D. A., et al. (2002). Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Medical Research Methodology, 2, 9. https://doi.org/10.1186/1471-2288-2-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, X., Wen, W., Shan, X., Qian, J., Li, H., Jiang, T., et al. (2016). MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thrombosis Research, 138, 91–95. https://doi.org/10.1016/j.thromres.2015.12.006.

    Article  CAS  PubMed  Google Scholar 

  24. Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., & Bossuyt, P. M. (2003). The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology, 56(11), 1129–1135. https://doi.org/10.1016/s0895-4356(03)00177-x.

    Article  PubMed  Google Scholar 

  25. Lee, J., Kim, K. W., Choi, S. H., Huh, J., & Park, S. H. (2015). Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical. Researchers-Part II. Statistical. methods of meta-analysis. Korean Journal of Radiology, 16(6), 1188–1196. https://doi.org/10.3348/kjr.2015.16.6.1188.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim, J. Y., Kim, K. H., Cho, J. Y., Sim, D. S., Yoon, H. J., Yoon, N. S., et al. (2019). D-dimer/troponin ratio in the differential diagnosis of acute pulmonary embolism from non-ST elevation myocardial infarction. The Korean Journal of Internal Medicine, 34(6), 1263–1271. https://doi.org/10.3904/kjim.2018.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anderson, J. L., & Morrow, D. A. (2017). Acute myocardial infarction. The New England Journal of Medicine, 376(21), 2053–2064. https://doi.org/10.1056/NEJMra1606915.

    Article  CAS  PubMed  Google Scholar 

  28. Weitz, J. I., Fredenburgh, J. C., & Eikelboom, J. W. (2017). A test in context: D-dimer. Journal of the American College of Cardiology, 70(19), 2411–2420. https://doi.org/10.1016/j.jacc.2017.09.024.

    Article  CAS  PubMed  Google Scholar 

  29. Froehling, D. A., Elkin, P. L., Swensen, S. J., Heit, J. A., Pankratz, V. S., & Ryu, J. H. (2004). Sensitivity and specificity of the semiquantitative latex agglutination D-dimer assay for the diagnosis of acute pulmonary embolism as defined by computed tomographic angiography. Mayo Clinic Proceedings, 79(2), 164–168. https://doi.org/10.4065/79.2.164.

    Article  PubMed  Google Scholar 

  30. Jain, S., Khera, R., Suneja, M., Gehlbach, B., & Kuperman, E. (2015). Role of D-dimer assays in the diagnostic evaluation of pulmonary embolism. The American Journal of the Medical Sciences, 350(6), 501–507. https://doi.org/10.1097/MAJ.0000000000000405.

    Article  PubMed  Google Scholar 

  31. Wang, Q., Ma, J., Jiang, Z., Wu, F., Ping, J., & Ming, L. (2018). Diagnostic value of circulating microRNA-27a/b in patients with acute pulmonary embolism. International Angiology, 37(1), 19–25. https://doi.org/10.23736/S0392-9590.17.03877-9.

    Article  PubMed  Google Scholar 

  32. Qian, W. (2018). Diagnostic value and mechanism of plasma microRNA-27a/ b in patients with acute pulmonary embolism. Zhengzhou University.

Download references

Acknowledgments

Thanks to Associate Professor Yu Xiaojin, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, for her help and guidance in data processing and analysis.

Funding

This study was funded by Key Research and Development Project of Hebei Province: Study on circulating biomarkers of acute pulmonary thromboembolism and its application value in risk stratification and prognosis evaluation (grant number 182777198).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Gao or Ran Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, M., Gao, X. et al. Predictive Value of Circulating microRNA-134 Levels for Early Diagnosis of Acute Pulmonary Embolism: Meta-analysis. J. of Cardiovasc. Trans. Res. 14, 744–753 (2021). https://doi.org/10.1007/s12265-020-10087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10087-4

Keywords

Navigation