Skip to main content

Advertisement

Log in

Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure (HF) remains one of the major causes of morbidity and mortality worldwide. Recent studies have shown that stem cells (SCs) including bone marrow mesenchymal stem (BMSC), embryonic bodies (EB), embryonic stem (ESC), human induced pluripotent stem (hiPSC)-derived cardiac cells generation, and transplantation treated myocardial infarction (MI) in vivo and in human. However, the immature phenotypes compromise their clinical application requiring immediate intervention to improve stem-derived cardiac cell (S-CCs) maturation. Recently, an unbiased multi-omic analysis involving genomics, transcriptomics, epigenomics, proteomics, and metabolomics identified specific strategies for the generation of matured S-CCs that may enhance patients’ recovery processes upon transplantation. However, these strategies still remain undisclosed. Here, we summarize the recently discovered strategies for the matured S-CC generation. In addition, cardiac patch formation and transplantation that accelerated HF recuperation in clinical trials are discussed. A better understanding of this work may lead to efficient generation of matured S-CCs for regenerative medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tae-Oh Kim, M.-S. K., Kim, J.-J., & Song, J.-K. (2014). Efficacy and optimal duration of heart failure medications in preventing the recurrence of stress-induced cardiomyopathy. Circulation, 130, A17862.

    Google Scholar 

  2. Goldstein, D., Moskowitz, A. J., Gelijns, A. C., Ailawadi, G., Parides, M. K., Perrault, L. P., Hung, J. W., Voisine, P., Dagenais, F., Gillinov, A. M., Thourani, V., Argenziano, M., Gammie, J. S., Mack, M., Demers, P., Atluri, P., Rose, E. A., O'Sullivan, K., Williams, D. L., Bagiella, E., Michler, R. E., Weisel, R. D., Miller, M. A., Geller, N. L., Taddei-Peters, W. C., Smith, P. K., Moquete, E., Overbey, J. R., Kron, I. L., O'Gara, P. T., & Acker, M. A. (2016). Ctsn, Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. The New England Journal of Medicine, 374(4), 344–353.

    Article  CAS  PubMed  Google Scholar 

  3. Tomohiro Saito, M. D., Weng, Y., Potapov, E., & Krabatsch, T. (2018). Left ventricular assist device reimplantation for recurrent heart failure after myocardial recovery and weaning. Circulation, 130, A12417.

    Google Scholar 

  4. Binanay, C., Califf, R. M., Hasselblad, V., O'Connor, C. M., Shah, M. R., Sopko, G., Stevenson, L. W., Francis, G. S., Leier, C. V., Miller, L. W., Investigators, E., & Coordinators, E. S. (2005). Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA, 294(13), 1625–1633.

    Article  PubMed  Google Scholar 

  5. Parmar, K. R., Xiu, P. Y., Chowdhury, M. R., Patel, E., & Cohen, M. (2015). In-hospital treatment and outcomes of heart failure in specialist and non-specialist services: a retrospective cohort study in the elderly. Open Heart, 2(1), e000095.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gao, L., Gregorich, Z. R., Zhu, W., Mattapally, S., Oduk, Y., Lou, X., Kannappan, R., Borovjagin, A. V., Walcott, G. P., Pollard, A. E., Fast, V. G., Hu, X., Lloyd, S. G., Ge, Y., & Zhang, J. (2018). Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation, 137(16), 1712–1730.

    Article  PubMed  Google Scholar 

  7. Ronaldson-Bouchard, K., Ma, S. P., Yeager, K., Chen, T., Song, L., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., & Vunjak-Novakovic, G. (2018). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 556(7700), 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moghtadaei, M., Jansen, H. J., Mackasey, M., Rafferty, S. A., Bogachev, O., Sapp, J. L., Howlett, S. E., & Rose, R. A. (2016). The impacts of age and frailty on heart rate and sinoatrial node function. The Journal of Physiology, 594(23), 7105–7126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gorabi, A. M., Hajighasemi, S., Tafti, H. A., & Atashi, A. (2019). TBX18 transcription factor overexpression in human-induced pluripotent stem cells increases their differentiation into pacemaker-like cells. Journal of Cellular Physiology, 234, 1534–1546.

    Article  CAS  PubMed  Google Scholar 

  10. Schulze, M. L., Lemoine, M., & Fischer, A. W. (2019). Dissecting hiPSC-CM pacemaker function in a cardiac organoid model. Biomaterials., 206, 133–145.

    Article  CAS  PubMed  Google Scholar 

  11. Liang, W., Han, P., Kim, E. H., Mak, J., Zhang, R., Torrente, A. G., Goldhaber, J. I., Marban, E., & Cho, H. C. (2019). Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells, 38(3), 352–368.

  12. Ionta, V., Liang, W., Kim, E. H., Rafie, R., Giacomello, A., Marban, E., & Cho, H. C. (2015). SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports, 4(1), 129–142.

    Article  CAS  PubMed  Google Scholar 

  13. Tsai, S. Y., Chen, S., & Evans, T. (2017). Efficient generation of cardiac Purkinje-like cells from embryonic stem cells by activating cAMP signaling. Current Protocols in Stem Cell Biology, 40, 1F 16 1-1F 16 13.

    Article  PubMed  CAS  Google Scholar 

  14. Pallante, B. A., Giovannone, S., Fang-Yu, L., Zhang, J., Liu, N., Kang, G., Dun, W., Boyden, P. A., & Fishman, G. I. (2010). Contactin-2 expression in the cardiac Purkinje fiber network. Circulation. Arrhythmia and Electrophysiology, 3(2), 186–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsai, S. Y., Maass, K., Lu, J., Fishman, G. I., Chen, S., & Evans, T. (2015). Efficient generation of cardiac Purkinje cells from ESCs by activating cAMP signaling. Stem Cell Reports, 4(6), 1089–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y., Zhang, W. Y., Hu, S., Lan, F., Lee, A. S., Huber, B., Lisowski, L., Liang, P., Huang, M., de Almeida, P. E., Won, J. H., Sun, N., Robbins, R. C., Kay, M. A., Urnov, F. D., & Wu, J. C. (2012). Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circulation Research, 111(12), 1494–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, C. Y., Sung, J. J., Cho, S. R., Kim, J., & Kim, D. W. (2019). Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Reports, 12(6), 1242–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, M. T., Shao, N. Y., Hu, S., Ma, N., Srinivasan, R., Jahanbani, F., Lee, J., Zhang, S. L., Snyder, M. P., & Wu, J. C. (2017). Cell type-specific chromatin signatures underline regulatory DNA elements in human induced pluripotent stem cells and somatic cells. Circulation Research, 121(11), 1237–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka, T., Izawa, K., Maniwa, Y., Okamura, M., Okada, A., Yamaguchi, T., Shirakura, K., Maekawa, N., Matsui, H., Ishimoto, K., Hino, N., Nakagawa, O., Aird, W. C., Mizuguchi, H., Kawabata, K., Doi, T., & Okada, Y. (2018). ETV2-TET1/TET2 complexes induce endothelial cell-specific Robo4 expression via promoter demethylation. Scientific Reports, 8(1), 5653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., Herrerias, A., Batchelder, E. M., Plongthongkum, N., Lutz, M., Berggren, W. T., Zhang, K., Evans, R. M., Siuzdak, G., & Izpisua Belmonte, J. C. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177.

    Article  CAS  PubMed  Google Scholar 

  21. Tiemeier, G. L., de Koning, R., Wang, G., Kostidis, S., Rietjens, R. G. J., Sol, W., Dumas, S. J., Giera, M., van den Berg, C. W., Eikenboom, J. C. J., van den Berg, B. M., Carmeliet, P., & Rabelink, T. J. (2020). Lowering the increased intracellular pH of human-induced pluripotent stem cell-derived endothelial cells induces formation of mature Weibel-Palade bodies. Stem Cells Translational Medicine, 9(7), 758–772.

  22. Hellen, N., Pinto Ricardo, C., Vauchez, K., Whiting, G., Wheeler, J. X., & Harding, S. E. (2019). Proteomic analysis reveals temporal changes in protein expression in human induced pluripotent stem cell-derived cardiomyocytes in vitro. Stem Cells and Development, 28(9), 565–578.

    Article  CAS  PubMed  Google Scholar 

  23. Chan, X. Y., Black, R., Dickerman, K., Federico, J., Levesque, M., Mumm, J., & Gerecht, S. (2015). Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(12), 2677–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alrefai, M. T., Tarola, C. L., Raagas, R., Ridwan, K., Shalal, M., Lomis, N., Paul, A., Alrefai, M. D., Prakash, S., Schwertani, A., & Shum-Tim, D. (2019). Functional assessment of pluripotent and mesenchymal stem cell derived secretome in heart disease. Ann Stem Cell Res, 2(1), 29–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Rewashdy, H., Ljubicic, V., Lin, W., Renaud, J. M., & Jasmin, B. J. (2015). Utrophin a is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Human Molecular Genetics, 24(5), 1243–1255.

    Article  CAS  PubMed  Google Scholar 

  26. Rieker, C., Migliavacca, E., Vaucher, A., Baud, G., Marquis, J., Charpagne, A., Hegde, N., Guignard, L., McLachlan, M., & Pooler, A. M. (2019). Apolipoprotein E4 expression causes gain of toxic function in isogenic human induced pluripotent stem cell-derived endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(9), e195–e207.

    Article  CAS  PubMed  Google Scholar 

  27. Patsch, C., Challet-Meylan, L., Thoma, E. C., Urich, E., Heckel, T., O'Sullivan, J. F., Grainger, S. J., Kapp, F. G., Sun, L., Christensen, K., Xia, Y., Florido, M. H., He, W., Pan, W., Prummer, M., Warren, C. R., Jakob-Roetne, R., Certa, U., Jagasia, R., Freskgard, P. O., Adatto, I., Kling, D., Huang, P., Zon, L. I., Chaikof, E. L., Gerszten, R. E., Graf, M., Iacone, R., & Cowan, C. A. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neri, T., Hiriart, E., van Vliet, P. P., Faure, E., Norris, R. A., Farhat, B., Jagla, B., Lefrancois, J., Sugi, Y., Moore-Morris, T., Zaffran, S., Faustino, R. S., Zambon, A. C., Desvignes, J. P., Salgado, D., Levine, R. A., de la Pompa, J. L., Terzic, A., Evans, S. M., Markwald, R., & Puceat, M. (2019). Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nature Communications, 10(1), 1929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Harding, A., Cortez-Toledo, E., Magner, N. L., Beegle, J. R., Coleal-Bergum, D. P., Hao, D., Wang, A., Nolta, J. A., & Zhou, P. (2017). Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells, 35(4), 909–919.

    Article  CAS  PubMed  Google Scholar 

  30. Descamps, B., Saif, J., Benest, A. V., Biglino, G., Bates, D. O., Chamorro-Jorganes, A., & Emanueli, C. (2018). BDNF (brain-derived neurotrophic factor) promotes embryonic stem cells differentiation to endothelial cells via a molecular pathway, including microRNA-214, EZH2 (enhancer of Zeste homolog 2), and eNOS (endothelial nitric oxide synthase). Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), 2117–2125.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, H., Zhao, Y., Li, Z., Ouyang, Q., Sun, Y., Zhou, D., Xie, P., Zeng, S., Dong, L., Wen, H., Lu, G., Lin, G., & Hu, L. (2018). FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells. Cell Death & Disease, 9(2), 131.

    Article  CAS  Google Scholar 

  32. Olmer, R., Engels, L., Usman, A., Menke, S., Malik, M. N. H., Pessler, F., Gohring, G., Bornhorst, D., Bolten, S., Abdelilah-Seyfried, S., Scheper, T., Kempf, H., Zweigerdt, R., & Martin, U. (2018). Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Reports, 10(5), 1657–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo, Y., Liu, C., Cerbini, T., San, H., Lin, Y., Chen, G., Rao, M. S., & Zou, J. (2014). Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Translational Medicine, 3(7), 821–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long, C., Li, H., Tiburcy, M., Rodriguez-Caycedo, C., Kyrychenko, V., Zhou, H., Zhang, Y., Min, Y. L., Shelton, J. M., Mammen, P. P. A., Liaw, N. Y., Zimmermann, W. H., Bassel-Duby, R., Schneider, J. W., & Olson, E. N. (2018). Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Science Advances, 4(1), eaap9004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu, J., Li, Y., Lin, B., Sheng, Y., & Yang, L. (2017). HBL1 is a human long noncoding RNA that modulates cardiomyocyte development from pluripotent stem cells by counteracting MIR1. Developmental Cell, 42(4), 333–348 e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., Mackie, A. R., Vaughan, E., Garikipati, V. N., Benedict, C., Ramirez, V., Lambers, E., Ito, A., Gao, E., Misener, S., Luongo, T., Elrod, J., Qin, G., Houser, S. R., Koch, W. J., & Kishore, R. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida, S., Miyagawa, S., Fukushima, S., Kawamura, T., Kashiyama, N., Ohashi, F., Toyofuku, T., Toda, K., & Sawa, Y. (2018). Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Molecular Therapy, 26(11), 2681–2695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poon, E. N.-y., Hao, B., et al. (2018). Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovascular Research, 114, 894–906.

    Article  CAS  PubMed  Google Scholar 

  39. Siede, D., Rapti, K., Gorska, A. A., Katus, H. A., Altmuller, J., Boeckel, J. N., Meder, B., Maack, C., Volkers, M., Muller, O. J., Backs, J., & Dieterich, C. (2017). Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. Journal of Molecular and Cellular Cardiology, 109, 48–56.

    Article  CAS  PubMed  Google Scholar 

  40. Kuroda, T., Yasuda, S., Tachi, S., Matsuyama, S., Kusakawa, S., Tano, K., Miura, T., Matsuyama, A., & Sato, Y. (2019). SALL3 expression balance underlies lineage biases in human induced pluripotent stem cell differentiation. Nature Communications, 10(1), 2175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rajasingh, J., Thangavel, J., Siddiqui, M. R., Gomes, I., Gao, X. P., Kishore, R., & Malik, A. B. (2011). Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One, 6(7), e22550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., & Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5(6), 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J. Z., Termglinchan, V., Shao, N. Y., Itzhaki, I., Liu, C., Ma, N., Tian, L., Wang, V. Y., Chang, A. C. Y., Guo, H., Kitani, T., Wu, H., Lam, C. K., Kodo, K., Sayed, N., Blau, H. M., & Wu, J. C. (2019). A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell, 24(5), 802–811 e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H., & Keller, G. M. (2017). Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell, 21(2), 179–194 e4.

    Article  PubMed  CAS  Google Scholar 

  45. Spater, D., Abramczuk, M. K., Buac, K., Zangi, L., Stachel, M. W., Clarke, J., Sahara, M., Ludwig, A., & Chien, K. R. (2013). A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nature Cell Biology, 15(9), 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  46. Menasche, P., Vanneaux, V., Fabreguettes, J. R., Bel, A., Tosca, L., Garcia, S., Bellamy, V., Farouz, Y., Pouly, J., Damour, O., Perier, M. C., Desnos, M., Hagege, A., Agbulut, O., Bruneval, P., Tachdjian, G., Trouvin, J. H., & Larghero, J. (2015). Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. European Heart Journal, 36(12), 743–750.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., Zhang, X., Qin, G., He, S. H., Zimmerman, A., Liu, Y., Kim, I. M., Weintraub, N. L., & Tang, Y. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.

    Article  PubMed  Google Scholar 

  48. Bedi Jr., K. C., Snyder, N. W., Brandimarto, J., Aziz, M., Mesaros, C., Worth, A. J., Wang, L. L., Javaheri, A., Blair, I. A., Margulies, K. B., & Rame, J. E. (2016). Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation, 133(8), 706–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schick, R., Mekies, L. N., Shemer, Y., Eisen, B., Hallas, T., Ben Jehuda, R., Ben-Ari, M., Szantai, A., Willi, L., Shulman, R., Gramlich, M., Pane, L. S., My, I., Freimark, D., Murgia, M., Santamaria, G., Gherghiceanu, M., Arad, M., Moretti, A., & Binah, O. (2018). Functional abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from titin-mutated patients with dilated cardiomyopathy. PLoS One, 13(10), e0205719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang, B., Nie, J., Wu, L., Hu, Y., Wen, Z., Dong, L., Zou, M. H., Chen, C., & Wang, D. W. (2018). AMPKalpha2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circulation Research, 122(5), 712–729.

    Article  CAS  PubMed  Google Scholar 

  51. Lai, L., Reineke, E., Hamilton, D. J., & Cooke, J. P. (2019). Glycolytic switch is required for transdifferentiation to endothelial lineage. Circulation, 139(1), 119–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao, X., Chen, H., Xiao, D., Yang, H., Itzhaki, I., Qin, X., Chour, T., Aguirre, A., Lehmann, K., Kim, Y., Shukla, P., Holmstrom, A., Zhang, J. Z., Zhuge, Y., Ndoye, B. C., Zhao, M., Neofytou, E., Zimmermann, W. H., Jain, M., & Wu, J. C. (2018). Comparison of non-human primate versus human induced pluripotent stem cell-derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Reports, 10(2), 422–435.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ulmer, B. M., Stoehr, A., Schulze, M. L., Patel, S., Gucek, M., Mannhardt, I., Funcke, S., Murphy, E., Eschenhagen, T., & Hansen, A. (2018). Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Reports, 10(3), 834–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramachandra, C. J. A., Mehta, A., Wong, P., Ja, K., Fritsche-Danielson, R., Bhat, R. V., Hausenloy, D. J., Kovalik, J. P., & Shim, W. (2018). Fatty acid metabolism driven mitochondrial bioenergetics promotes advanced developmental phenotypes in human induced pluripotent stem cell derived cardiomyocytes. International Journal of Cardiology, 272, 288–297.

    Article  PubMed  Google Scholar 

  55. Horikoshi, Y., Yan, Y., Terashvili, M., Wells, C., Horikoshi, H., Fujita, S., Bosnjak, Z. J., & Bai, X. (2019). Fatty acid-treated induced pluripotent stem cell-derived human c0ardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells, 8(9), 1095.

  56. Tallquist, M. D., & Molkentin, J. D. (2017). Redefining the identity of cardiac fibroblasts. Nature Reviews. Cardiology, 14(8), 484–491.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, G., Bracamonte-Baran, W., Diny, N. L., Hou, X., Talor, M. V., Fu, K., Liu, Y., Davogustto, G., Vasquez, H., Taegtmeyer, H., Frazier, O. H., Waisman, A., Conway, S. J., Wan, F., & Cihakova, D. (2018). Sca-1(+) cardiac fibroblasts promote development of heart failure. European Journal of Immunology, 48(9), 1522–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Giacomelli, E., Meraviglia, V., Campostrini, G., Cochrane, A., Cao, X., van Helden, R. W. J., Garcia, A. K., Mircea, M., Kostidis, S., Davis, R. P., van Meer, B. J., Jost, C. R., Koster, A. J., Mei, H., Miguez, D. G., Mulder, A. A., Ledesma-Terron, M., Pompilio, G., Sala, L., Salvatori, D. C. F., Slieker, R. C., Sommariva, E., de Vries, A. A. F., Giera, M., Semrau, S., Tertoolen, L. G. J., Orlova, V. V., Bellin, M., & Mummery, C. L. (2020). Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell, 26(6), 862–879 e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bao, X., Lian, X., Qian, T., Bhute, V. J., Han, T., & Palecek, S. P. (2017). Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nature Protocols, 12(9), 1890–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guadix, J. A., Orlova, V. V., Giacomelli, E., Bellin, M., Ribeiro, M. C., Mummery, C. L., Perez-Pomares, J. M., & Passier, R. (2017). Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Reports, 9(6), 1754–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ong, C. S., Fukunishi, T., Zhang, H., Huang, C. Y., Nashed, A., Blazeski, A., DiSilvestre, D., Vricella, L., Conte, J., Tung, L., Tomaselli, G. F., & Hibino, N. (2017). Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Scientific Reports, 7(1), 4566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sugiura, T., Hibino, N., Breuer, C. K., & Shinoka, T. (2016). Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. Journal of Cardiothoracic Surgery, 11(1), 163.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khan, M., Xu, Y., Hua, S., Johnson, J., Belevych, A., Janssen, P. M., Gyorke, S., Guan, J., & Angelos, M. G. (2015). Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One, 10(5), e0126338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Castro, L., Geertz, B., Reinsch, M., Aksehirlioglu, B., Hansen, A., Eschenhagen, T., Reichenspurner, H., Weinberger, F., & Pecha, S. (2019). Implantation of hiPSC-derived cardiac-muscle patches after myocardial injury in a Guinea pig model. Journal of Visualized Experiments, 18, 145.

  65. Ma, J., Guo, L., Fiene, S. J., Anson, B. D., Thomson, J. A., Kamp, T. J., Kolaja, K. L., Swanson, B. J., & January, C. T. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. American Journal of Physiology. Heart and Circulatory Physiology, 301(5), H2006–H2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shinnawi, R., Shaheen, N., Huber, I., Shiti, A., Arbel, G., Gepstein, A., Ballan, N., Setter, N., Tijsen, A. J., Borggrefe, M., & Gepstein, L. (2019). Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets. Journal of the American College of Cardiology, 73(18), 2310–2324.

    Article  PubMed  Google Scholar 

  67. Lancaster, J. J., Sanchez, P., Repetti, G. G., Juneman, E., Pandey, A. C., Chinyere, I. R., Moukabary, T., LaHood, N., Daugherty, S. L., & Goldman, S. (2019). Human induced pluripotent stem cell-derived cardiomyocyte patch in rats with heart failure. The Annals of Thoracic Surgery, 108(4), 1169–1177.

    Article  PubMed  Google Scholar 

  68. Lancaster, J. J., Juneman, E., Arnce, S. A., Johnson, N. M., Qin, Y., Witte, R., Thai, H., Kellar, R. S., Ek Vitorin, J., Burt, J., Gaballa, M. A., Bahl, J. J., & Goldman, S. (2014). An electrically coupled tissue-engineered cardiomyocyte scaffold improves cardiac function in rats with chronic heart failure. The Journal of Heart and Lung Transplantation, 33(4), 438–445.

    Article  PubMed  Google Scholar 

  69. Kawamura, M., Miyagawa, S., Fukushima, S., Saito, A., Miki, K., Funakoshi, S., Yoshida, Y., Yamanaka, S., Shimizu, T., Okano, T., Daimon, T., Toda, K., & Sawa, Y. (2017). Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Scientific Reports, 7(1), 8824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kawamura, M., Miyagawa, S., Fukushima, S., Saito, A., Miki, K., Ito, E., Sougawa, N., Kawamura, T., Daimon, T., Shimizu, T., Okano, T., Toda, K., & Sawa, Y. (2013). Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation, 128(11 Suppl 1), S87–S94.

    Article  PubMed  Google Scholar 

  71. Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'Erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M. R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bauwens, C. L., Peerani, R., Niebruegge, S., Woodhouse, K. A., Kumacheva, E., Husain, M., & Zandstra, P. W. (2008). Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells, 26(9), 2300–2310.

    Article  PubMed  Google Scholar 

  73. Gaebel, R., Ma, N., Liu, J., Guan, J., Koch, L., Klopsch, C., Gruene, M., Toelk, A., Wang, W., Mark, P., Wang, F., Chichkov, B., Li, W., & Steinhoff, G. (2011). Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32(35), 9218–9230.

    Article  CAS  PubMed  Google Scholar 

  74. Gaetani, R., Doevendans, P. A., Metz, C. H., Alblas, J., Messina, E., Giacomello, A., & Sluijter, J. P. (2012). Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 33(6), 1782–1790.

    Article  CAS  PubMed  Google Scholar 

  75. Arai, K., Murata, D., Verissimo, A. R., Mukae, Y., Itoh, M., Nakamura, A., Morita, S., & Nakayama, K. (2018). Fabrication of scaffold-free tubular cardiac constructs using a bio-3D printer. PLoS One, 13(12), e0209162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaetani, R., Feyen, D. A., Verhage, V., Slaats, R., Messina, E., Christman, K. L., Giacomello, A., Doevendans, P. A., & Sluijter, J. P. (2015). Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 61, 339–348.

    Article  CAS  PubMed  Google Scholar 

  77. Pati, F., Jang, J., Ha, D. H., Won Kim, S., Rhie, J. W., Shim, J. H., Kim, D. H., & Cho, D. W. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5, 3935.

    Article  CAS  PubMed  Google Scholar 

  78. Bejleri, D., Streeter, B. W., Nachlas, A. L. Y., Brown, M. E., Gaetani, R., Christman, K. L., & Davis, M. E. (2018). A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Advanced Healthcare Materials, 7(23), e1800672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Menasche, P., Vanneaux, V., Hagege, A., Bel, A., Cholley, B., Cacciapuoti, I., Parouchev, A., Benhamouda, N., Tachdjian, G., Tosca, L., Trouvin, J. H., Fabreguettes, J. R., Bellamy, V., Guillemain, R., Suberbielle Boissel, C., Tartour, E., Desnos, M., & Larghero, J. (2015). Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. European Heart Journal, 36(30), 2011–2017.

    Article  PubMed  Google Scholar 

  80. Menasche, P., Vanneaux, V., Hagege, A., Bel, A., Cholley, B., Parouchev, A., Cacciapuoti, I., Al-Daccak, R., Benhamouda, N., Blons, H., Agbulut, O., Tosca, L., Trouvin, J. H., Fabreguettes, J. R., Bellamy, V., Charron, D., Tartour, E., Tachdjian, G., Desnos, M., & Larghero, J. (2018). Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. Journal of the American College of Cardiology, 71(4), 429–438.

    Article  PubMed  Google Scholar 

  81. Malliaras, K., Makkar, R. R., Smith, R. R., Cheng, K., Wu, E., Bonow, R. O., Marban, L., Mendizabal, A., Cingolani, E., Johnston, P. V., Gerstenblith, G., Schuleri, K. H., Lardo, A. C., & Marban, E. (2014). Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). Journal of the American College of Cardiology, 63(2), 110–122.

    Article  PubMed  Google Scholar 

  82. Bartunek, J., Davison, B., Sherman, W., Povsic, T., Henry, T. D., Gersh, B., Metra, M., Filippatos, G., Hajjar, R., Behfar, A., Homsy, C., Cotter, G., Wijns, W., Tendera, M., & Terzic, A. (2016). Congestive heart failure cardiopoietic regenerative therapy (CHART-1) trial design. European Journal of Heart Failure, 18(2), 160–168.

    Article  PubMed  Google Scholar 

  83. Kim, S. H., Cho, J. H., Lee, Y. H., Lee, J. H., Kim, S. S., Kim, M. Y., Lee, M. G., Kang, W. Y., Lee, K. S., Ahn, Y. K., Jeong, M. H., & Kim, H. S. (2018). Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior Wall ST-segment elevation myocardial infarction. Cardiovascular Drugs and Therapy, 32(4), 329–338.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Teerlink, J. R., Metra, M., Filippatos, G. S., Davison, B. A., Bartunek, J., Terzic, A., Gersh, B. J., Povsic, T. J., Henry, T. D., Alexandre, B., Homsy, C., Edwards, C., Seron, A., Wijns, W., Cotter, G., & Investigators, C. (2017). Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: Results from the congestive heart failure cardiopoietic regenerative therapy (CHART-1) study. European Journal of Heart Failure, 19(11), 1520–1529.

    Article  PubMed  Google Scholar 

  85. Bartunek, J., Terzic, A., Davison, B. A., Filippatos, G. S., Radovanovic, S., Beleslin, B., Merkely, B., Musialek, P., Wojakowski, W., Andreka, P., Horvath, I. G., Katz, A., Dolatabadi, D., El Nakadi, B., Arandjelovic, A., Edes, I., Seferovic, P. M., Obradovic, S., Vanderheyden, M., Jagic, N., Petrov, I., Atar, S., Halabi, M., Gelev, V. L., Shochat, M. K., Kasprzak, J. D., Sanz-Ruiz, R., Heyndrickx, G. R., Nyolczas, N., Legrand, V., Guedes, A., Heyse, A., Moccetti, T., Fernandez-Aviles, F., Jimenez-Quevedo, P., Bayes-Genis, A., Hernandez-Garcia, J. M., Ribichini, F., Gruchala, M., Waldman, S. A., Teerlink, J. R., Gersh, B. J., Povsic, T. J., Henry, T. D., Metra, M., Hajjar, R. J., Tendera, M., Behfar, A., Alexandre, B., Seron, A., Stough, W. G., Sherman, W., Cotter, G., & Wijns, W. (2017). C. Program, Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. European Heart Journal, 38(9), 648–660.

    CAS  PubMed  Google Scholar 

  86. Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shen, C. C., Hsu, M. N., Chang, C. W., Lin, M. W., Hwu, J. R., Tu, Y., & Hu, Y. C. (2019). Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Research, 47(3), e13.

    Article  PubMed  CAS  Google Scholar 

  88. Yang, Y., Wu, H., Kang, X., Liang, Y., Lan, T., Li, T., Tan, T., Peng, J., Zhang, Q., An, G., Liu, Y., Yu, Q., Ma, Z., Lian, Y., Soh, B. S., Chen, Q., Liu, P., Chen, Y., Sun, X., Li, R., Zhen, X., Liu, P., Yu, Y., Li, X., & Fan, Y. (2018). Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein & Cell, 9(3), 283–297.

    Article  CAS  Google Scholar 

  89. Karakikes, I., Termglinchan, V., Cepeda, D. A., Lee, J., Diecke, S., Hendel, A., Itzhaki, I., Ameen, M., Shrestha, R., Wu, H., Ma, N., Shao, N. Y., Seeger, T., Woo, N., Wilson, K. D., Matsa, E., Porteus, M. H., Sebastiano, V., & Wu, J. C. (2017). A comprehensive TALEN-based knockout library for generating human-induced pluripotent stem cell-based models for cardiovascular diseases. Circulation Research, 120(10), 1561–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tohyama, S., Fujita, J., Fujita, C., Yamaguchi, M., Kanaami, S., Ohno, R., Sakamoto, K., Kodama, M., Kurokawa, J., Kanazawa, H., Seki, T., Kishino, Y., Okada, M., Nakajima, K., Tanosaki, S., Someya, S., Hirano, A., Kawaguchi, S., Kobayashi, E., & Fukuda, K. (2017). Efficient large-scale 2D culture system for human induced pluripotent stem cells and differentiated cardiomyocytes. Stem Cell Reports, 9(5), 1406–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamad, S., Derichsweiler, D., Papadopoulos, S., Nguemo, F., Saric, T., Sachinidis, A., Brockmeier, K., Hescheler, J., Boukens, B. J., & Pfannkuche, K. (2019). Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics, 9(24), 7222–7238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, V. C., Ye, J., Shukla, P., Hua, G., Chen, D., Lin, Z., Liu, J. C., Chai, J., Gold, J., Wu, J., Hsu, D., & Couture, L. A. (2015). Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Research, 15(2), 365–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kempf, H., Kropp, C., Olmer, R., Martin, U., & Zweigerdt, R. (2015). Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature Protocols, 10(9), 1345–1361.

    Article  CAS  PubMed  Google Scholar 

  94. Protze, S. I., Liu, J., Nussinovitch, U., Ohana, L., Backx, P. H., Gepstein, L., & Keller, G. M. (2017). Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nature Biotechnology, 35(1), 56–68.

    Article  CAS  PubMed  Google Scholar 

  95. Argenziano, M., Lambers, E., Hong, L., Sridhar, A., Zhang, M., Chalazan, B., Menon, A., Savio-Galimberti, E., Wu, J. C., Rehman, J., & Darbar, D. (2018). Electrophysiologic characterization of calcium handling in human induced pluripotent stem cell-derived atrial cardiomyocytes. Stem Cell Reports, 10(6), 1867–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maass, K., Shekhar, A., Lu, J., Kang, G., See, F., Kim, E. E., Delgado, C., Shen, S., Cohen, L., & Fishman, G. I. (2015). Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells, 33(4), 1102–1112.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yeung, E., Fukunishi, T., Bai, Y., Bedja, D., Pitaktong, I., Mattson, G., Jeyaram, A., Lui, C., Ong, C. S., Inoue, T., Matsushita, H., Abdollahi, S., Jay, S. M., & Hibino, N. (2019). Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. Journal of Tissue Engineering and Regenerative Medicine, 13(11), 2031–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakane, T., Masumoto, H., Tinney, J. P., Yuan, F., Kowalski, W. J., Ye, F., LeBlanc, A. J., Sakata, R., Yamashita, J. K., & Keller, B. B. (2017). Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue. Scientific Reports, 7, 45641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3179–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raghavan, S., Nelson, C. M., Baranski, J. D., Lim, E., & Chen, C. S. (2010). Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Engineering. Part A, 16(7), 2255–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bettinger, C. J., Weinberg, E. J., Kulig, K. M., Vacanti, J. P., Wang, Y., Borenstein, J. T., & Langer, R. (2005). Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Advanced Materials, 18(2), 165–169.

    Article  PubMed  CAS  Google Scholar 

  102. Jia, W., Gungor-Ozkerim, P. S., Zhang, Y. S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M. R., Shin, S. R., & Khademhosseini, A. (2016). Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106, 58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. C.C. NASA. STMD, https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue/about.html, (retrieved in 2020).

  104. Bursac, N., Loo, Y., Leong, K., & Tung, L. (2007). Novel anisotropic engineered cardiac tissues: Studies of electrical propagation. Biochemical and Biophysical Research Communications, 361(4), 847–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Veeraraghavan, R., Lin, J., Hoeker, G. S., Keener, J. P., Gourdie, R. G., & Poelzing, S. (2015). Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: An experimental and modeling study. Pflügers Archiv, 467(10), 2093–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dvir, T., Timko, B. P., Brigham, M. D., Naik, S. R., Karajanagi, S. S., Levy, O., Jin, H., Parker, K. K., Langer, R., & Kohane, D. S. (2011). Nanowired three-dimensional cardiac patches. Nature Nanotechnology, 6(11), 720–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mawad, D., Mansfield, C., Lauto, A., Perbellini, F., Nelson, G. W., Tonkin, J., Bello, S. O., Carrad, D. J., Micolich, A. P., Mahat, M. M., Furman, J., Payne, D., Lyon, A. R., Gooding, J. J., Harding, S. E., Terracciano, C. M., & Stevens, M. M. (2016). A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2(11), e1601007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Conant, G., Ahadian, S., Zhao, Y., & Radisic, M. (2017). Kinase inhibitor screening using artificial neural networks and engineered cardiac biowires. Scientific Reports, 7(1), 11807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Rai, R., Tallawi, M., Frati, C., Falco, A., Gervasi, A., Quaini, F., Roether, J. A., Hochburger, T., Schubert, D. W., Seik, L., Barbani, N., Lazzeri, L., Rosellini, E., & Boccaccini, A. R. (2015). Bioactive electrospun fibers of poly(glycerol sebacate) and poly(epsilon-caprolactone) for cardiac patch application. Advanced Healthcare Materials, 4(13), 2012–2025.

    Article  CAS  PubMed  Google Scholar 

  110. Puig-Sanvicens, V. A., Semino, C. E., & Zur Nieden, N. I. (2015). Cardiac differentiation potential of human induced pluripotent stem cells in a 3D self-assembling peptide scaffold. Differentiation, 90(4–5), 101–110.

    Article  CAS  PubMed  Google Scholar 

  111. Ribeiro, A. J., Ang, Y. S., Fu, J. D., Rivas, R. N., Mohamed, T. M., Higgs, G. C., Srivastava, D., & Pruitt, B. L. (2015). Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12705–12710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abilez, O. J., Tzatzalos, E., Yang, H., Zhao, M. T., Jung, G., Zollner, A. M., Tiburcy, M., Riegler, J., Matsa, E., Shukla, P., Zhuge, Y., Chour, T., Chen, V. C., Burridge, P. W., Karakikes, I., Kuhl, E., Bernstein, D., Couture, L. A., Gold, J. D., Zimmermann, W. H., & Wu, J. C. (2018). Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells, 36(2), 265–277.

    Article  CAS  PubMed  Google Scholar 

  113. Morishima, Y., Morishima, S., Murata, M., Arima, N., Uchida, N., Sugio, Y., Takahashi, S., Matsuhashi, Y., Onizuka, M., Eto, T., Nagafuji, K., Onishi, Y., Inoue, M., Atsuta, Y., Fukuda, T., Ichinohe, T., Kato, S., & Kanda, J. (2020). Impact of homozygous conserved extended HLA haplotype on single cord blood transplantation: Lessons for induced pluripotent stem cell banking and transplantation in allogeneic settings. Biology of Blood and Marrow Transplantation, 26(1), 132–138.

    Article  CAS  PubMed  Google Scholar 

  114. Pappas, D. J., Gourraud, P. A., Le Gall, C., Laurent, J., Trounson, A., DeWitt, N., & Talib, S. (2015). Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: Evaluating matching in a multiethnic and admixed population. Stem Cells Translational Medicine, 4(5), 413–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, S., Huh, J. Y., Turner, D. M., Lee, S., Robinson, J., Stein, J. E., Shim, S. H., Hong, C. P., Kang, M. S., Nakagawa, M., Kaneko, S., Nakanishi, M., Rao, M. S., Kurtz, A., Stacey, G. N., Marsh, S. G. E., Turner, M. L., & Song, J. (2018). Repurposing the cord blood Bank for Haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells, 36(10), 1552–1566.

    Article  CAS  PubMed  Google Scholar 

  116. Gourraud, P. A., Gilson, L., Girard, M., & Peschanski, M. (2012). The role of human leukocyte antigen matching in the development of multiethnic "haplobank" of induced pluripotent stem cell lines. Stem Cells, 30(2), 180–186.

    Article  CAS  PubMed  Google Scholar 

  117. Riolobos, L., Hirata, R. K., Turtle, C. J., Wang, P. R., Gornalusse, G. G., Zavajlevski, M., Riddell, S. R., & Russell, D. W. (2013). HLA engineering of human pluripotent stem cells. Molecular Therapy, 21(6), 1232–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., Thayer, W. O., Wahl, A., Garcia, J. V., Reichenspurner, H., Davis, M. M., Lanier, L. L., & Schrepfer, S. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature Biotechnology, 37(3), 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Okada, K., Koike, K., & Sawa, Y. (2015). Consideration of and expectations for the pharmaceuticals, Medical Devices and Other Therapeutic Products Act in Japan. Regenerative Therapy, 1, 80–83.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nagai, S., & Ozawa, K. (2017). New Japanese regulatory frameworks for clinical research and marketing authorization of gene therapy and cellular therapy products. Current Gene Therapy, 17(1), 17–28.

    Article  PubMed  Google Scholar 

  121. Okano, H., Nakamura, M., Yoshida, K., Okada, Y., Tsuji, O., Nori, S., Ikeda, E., Yamanaka, S., & Miura, K. (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circulation Research, 112(3), 523–533.

    Article  CAS  PubMed  Google Scholar 

  122. Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., Kawamura, T., Kuratani, T., Daimon, T., Shimizu, T., Okano, T., & Sawa, Y. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126(11 Suppl 1), S29–S37.

    Article  CAS  PubMed  Google Scholar 

  123. Joanne, P., Kitsara, M., Boitard, S. E., Naemetalla, H., Vanneaux, V., Pernot, M., Larghero, J., Forest, P., Chen, Y., Menasche, P., & Agbulut, O. (2016). Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials, 80, 157–168.

    Article  CAS  PubMed  Google Scholar 

  124. Zwi-Dantsis, L., Huber, I., Habib, M., Winterstern, A., Gepstein, A., Arbel, G., & Gepstein, L. (2013). Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 34(21), 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, H., Jin, Z., Liu, J., Yu, S., Cui, Q., & Yi, D. (2008). Mesenchymal stem cells might be used to induce tolerance in heart transplantation. Medical Hypotheses, 70(4), 785–787.

    Article  CAS  PubMed  Google Scholar 

  126. Tiburcy, M., Hudson, J. E., Balfanz, P., Schlick, S., Meyer, T., Liao, M. L. C., Levent, E., Raad, F., Zeidler, S., Wingender, E., Riegler, J., Wang, M., Gold, J. D., Kehat, I., Wettwer, E., Ravens, U., Dierickx, P., van Laake, L. W., Goumans, M. J., Khadjeh, S., Toischer, K., Hasenfuss, G., Couture, L. A., Unger, A., Linke, W. A., Araki, T., Neel, B., Keller, G., Gepstein, L., Wu, J. C., & Zimmermann, W. H. (2017). Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation, 135(19), 1832–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Su-Yi Tsai, Z. G. (2020). Hou-Jun Wang, a human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity. Cardiovascular Research, 116, 658–670.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Hunan Province, China (2018JJ2346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyin Long.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor: Junjie Xiao oversaw the review of this article.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, A.O., Rahman, G.A., Yin, K. et al. Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy. J. of Cardiovasc. Trans. Res. 14, 556–572 (2021). https://doi.org/10.1007/s12265-020-10085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10085-6

Keywords

Navigation