Skip to main content
Log in

Ultrasound-based prediction of interventricular septum positioning during left ventricular support—an experimental study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The implantation of left ventricular assist devices (LVADs) is often complicated by arrhythmias and right ventricular failure (RVF). Today, the pump speed is titrated to optimize device support using single observations of interventricular septum (IVS) positioning with echocardiographic ultrasound (US). The study demonstrates the applicability of three integrated US transducers in the LVAD cannula to monitor IVS positioning continuously and robustly in real time. In vitro, the predictor of the IVS shift shows an overall prediction error for all volume states of less than 20% and provides a continuous assessment for 99% of cases in four differently sized heart phantoms. The prediction of IVS shift depending on the cannula position is robust for azimuthal and polar deviations of ± 20° and ± 8°, respectively. This intracardiac US concept results in a viable predictor for IVS positioning and represents a promising approach to continuously monitor the IVS and ventricular loading in LVAD patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meineri, M., Van Rensburg, A. E., & Vegas, A. (2012). Right ventricular failure after LVAD implantation: Prevention and treatment. Best Practice & Research. Clinical Anaesthesiology, 26(2), 217–229.

    Article  Google Scholar 

  2. Nonaka, M. & Rao, V. (2014). Strategies to assess and minimize right heart failure after left ventricular assist device implantation, in Ventricular Assist Devices in Advanced-Stage Heart Failure. Springer, pp. 113–129.

  3. Sack, K. L., Dabiri, Y., Franz, T., Solomon, S. D., Burkhoff, D., & Guccione, J. M. (2018). Investigating the role of interventricular interdependence in development of right heart dysfunction during LVAD support: a patient-specific methods-based approach. Frontiers in Physiology, 9, 520.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haddad, F., Couture, P., Tousignant, C., & Denault, A. Y. (2009). The right ventricle in cardiac surgery, a perioperative perspective: I. anatomy, physiology, and assessment. Anesthesia & Analgesia, 108(2), 407–421.

    Article  Google Scholar 

  5. Noor, M. R., Bowles, C., & Banner, N. R. (2012). Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: influence of residual left ventricular function. European Journal of Heart Failure, 14(6), 613–620.

    Article  PubMed  Google Scholar 

  6. Bhama, J. K., & Bansal, A. (2018). Left ventricular assist device inflow cannula position may contribute to the development of heartmate ii left ventricular assist device pump thrombosis. The Ochsner Journal, 18(2), 131–135.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dual, S. A., Zimmermann, J. M., Neuenschwander, J., Cohrs, N. H., Solowjowa, N., Stark, W. J., Meboldt, M., & Schmid Daners, M. (2019). Ultrasonic sensor concept to fit a ventricular assist device cannula evaluated using geometrically accurate heart phantoms. Artificial Organs, 43(5), 467–477.

    Article  PubMed  Google Scholar 

  8. Bemis, C. E., Serur, J. R., Borkenhagen, D., Sonnenblick, E. H., & Urschel, C. W. (1974). Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circulation Research, 34(4), 498–504.

    Article  CAS  PubMed  Google Scholar 

  9. Kingma, I., Tyberg, J., & Smith, E. R. (1983). Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation, 68(6), 1304–1314.

    Article  CAS  PubMed  Google Scholar 

  10. Scardulla, F., Bellavia, D., Vitulo, P., Romano, G., Mina, C., Gentile, G., Clemenza, F., & Pasta, S. (2018). Biomechanical determinants of right ventricular failure in pulmonary hypertension. ASAIO Journal, 64(4), 557–564.

    Article  PubMed  Google Scholar 

  11. Reant, P., Captur, G., Mirabel, M., Nasis, A., Sado, D. M., Maestrini, V., Castelletti, S., Manisty, C., Herrey, A. S., Syrris, P., et al. (2015). Abnormal septal convexity into the left ventricle occurs in subclinical hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 17(1), 64.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braun, H., King, M. E., Goldblatt, A., Liberthson, R., & Weyman, A. E. (1982). Interventricular septal position as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. American Journal of Cardiology, 49(4), 1028.

    Article  Google Scholar 

  13. Brinker, J. A., Weiss, J. L., Lappe, D., Rabson, J. L., Summer, W. R., Permutt, S., & Weisfeldt, M. L. (1980). Leftward septal displacement during right ventricular loading in man. Circulation, 61(3), 626–633.

    Article  CAS  PubMed  Google Scholar 

  14. Lurz, P., Puranik, R., Nordmeyer, J., Muthurangu, V., Hansen, M. S., Schievano, S., Marek, J., Bonhoeffer, P., & Taylor, A. M. (2009). Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. European Heart Journal, 30(18), 2266–2274.

    Article  PubMed  Google Scholar 

  15. Mouratoglou, S. A., Kallifatidis, A., Pitsiou, G., Grosomanidis, V., Kamperidis, V., Chalikias, G., Kristo, D., Tziakas, D., Konstantinides, S., Hadjimiltiades, S. et al., (2018) Duration of interventricular septal shift toward the left ventricle is associated with poor clinical outcome in precapillary pulmonary hypertension: a cardiac magnetic resonance study, Hellenic Journal of Cardiology.

  16. Addetia, K., Maffessanti, F., Muraru, D., Singh, A., Surkova, E., Mor-Avi, V., Badano, L. P., & Lang, R. M. (2018). Morphologic analysis of the normal right ventricle using three-dimensional echocardiography–derived curvature indices. Journal of the American Society of Echocardiography, 31(5), 614–623.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maffessanti, F., Addetia, K., Yamat, M., Weinert, L., Lang, R. M., & Mor-Avi, V. (2015). Three-dimensional echocardiography based evaluation of right ventricular remodeling in patients with pressure overload. Computing in Cardiology Conference (CinC). IEEE, pp. 1209–1212.

  18. Medvedofsky, D., Maffessanti, F., Weinert, L., Tehrani, D. M., Narang, A., Addetia, K., Mediratta, A., Besser, S. A., Maor, E., Patel, A. R., et al. (2018). 2d and 3d echocardiography-derived indices of left ventricular function and shape: relationship with mortality. JACC: Cardiovascular Imaging, 11(11), 1569–1579.

    PubMed  Google Scholar 

  19. Palumbo, M. C., Bandera, F., Caiani, E., Alfonzetti, E., & Guazzi, M. (2018). Computational analysis of right ventricular curvature by 3d echocardiography: implications on pulmonary hypertension severity. Journal of the American College of Cardiology, 71(11 Supplement), A1618.

    Article  Google Scholar 

  20. Hussain, N., Capener, D., Elliot, C., Condliffe, R., Wild, J. M., Kiely, D. G., & Swift, A. (2015). Interventricular septal angle can be used to predict which patients have combined postcapillary or precapillary pulmonary hypertension in left heart disease. Journal of Cardiovascular Magnetic Resonance, 17(S1), P338.

    Article  PubMed Central  Google Scholar 

  21. Johns, C. S., Wild, J. M., Rajaram, S., Tubman, E., Capener, D., Elliot, C., Condliffe, R., Charalampopoulos, A., Kiely, D. G., & Swift, A. J. (2018). Identifying at-risk patients with combined pre-and postcapillary pulmonary hypertension using interventricular septal angle at cardiac MRI. Radiology, 289(1), 61–68.

  22. Heartware, (2017). Cytometry F. Software A. Heartware (TM) HVAD (TM) System - Instructions for use.

  23. Beyar, R., Dong, S.-J., Smith, E. R., Belenkie, I., & Tyberg, J. V. (1993). Ventricular interaction and septal deformation: a model compared with experimental data. American Journal of Physiology. Heart and Circulatory Physiology, 265(6), H2044–H2056.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the Zurich Heart project under the umbrella of University Medicine Zurich.

Funding

The authors received financial support from the Georg und Bertha Schwyzer-Winiker Foundation, the IMG Foundation, and the ETH Zurich Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Schmid Daners.

Ethics declarations

Conflict of Interest

SA Dual declares that she has no conflict of interest. L Anthamatten declares that he has no conflict of interest. P Shah has received research support from Abbott and Medtronic and he is a consultant of NuPulseCV and Procyrion. M Meboldt declares that he has no conflict of interest, and M Schmid Daners declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Navin Kumar Kapur oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dual, S.A., Anthamatten, L., Shah, P. et al. Ultrasound-based prediction of interventricular septum positioning during left ventricular support—an experimental study. J. of Cardiovasc. Trans. Res. 13, 1055–1064 (2020). https://doi.org/10.1007/s12265-020-10034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10034-3

Keywords

Navigation