Skip to main content

Advertisement

Log in

MicroRNA-208a: a Good Diagnostic Marker and a Predictor of no-Reflow in STEMI Patients Undergoing Primary Percutaneuos Coronary Intervention

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2024

This article has been updated

Abstract

MicroRNA-208a is a cardiac specific oligo-nucleotide. We aimed at investigating the ability of microRNA-208a to diagnose myocardial infarction and predict the outcome of primary percutaneuos coronary angiography (PCI). Patients (n = 75) presented by chest pain were recruited into two groups. Group 1 (n = 40) had ST elevation myocardial infarction (STEMI) and underwent primary PCI: 21 patients had sufficient reperfusion and 19 had no-reflow. Group 2 (n = 35) had negative cardiac troponins (cTns). Plasma microRNA-208a expression was assessed using quantitative polymerase chain reaction and patients were followed for occurrence of in-hospital major adverse cardiac events (MACE). MicroRNA-208a could diagnose of MI (AUC of 0.926). After primary PCI, it was superior to cTnT in prediction of no-reflow (AUC difference of 0.231, P = 0.0233) and MACE (AUC difference of 0.367, P = 0.0053). Accordingly, circulating levels of miR-208a can be used as a diagnostic marker of MI and a predictor of no-reflow and in-hospital MACE.

Receiver operating curve analysis of no-reflow prediction of miRNA208a, CK-MB and hs-Troponin T. MicroRNA-208a shows significantly higher prediction of no-reflow as compared to routine cardiac biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

Abbreviations

CABG:

coronary arteries bypass grafting

cDNA:

complementary DNA

CK-MB:

creatine kinase MB

cTnI:

cardiac Troponin I

cTns:

cardiac Troponins

ECG:

electrocardiogram

ED:

emergency department

hs-Tns:

high sensitivity troponins

MACE:

major cardiac adverse events

MI:

myocardial infarction

miR:

microRNA

PCI:

percutaneuos coronary angiography

qRT-PCR:

quantitative real time polymerase chain reaction

SPSS:

statistical package for social sciences

STEM:

ST elevation myocardial infarction

TIMI:

thrombolysis in myocardial infarction

URL:

upper reference limit

WBCs:

white blood cells

References

  1. Kristensen, S. D., Laut, K. G., Fajadet, J., et al. (2014). Reperfusion therapy for ST elevation acute myocardial infarction 2010/2011: current status in 37 ESC countries. European Heart Journal, 35(29), 1957–1970.

    Article  PubMed  Google Scholar 

  2. Henrikson, C. A., Howell, E. E., Bush, D. E., et al. (2003). Chest pain relief by nitroglycerin does not predict active coronary artery disease. Annals of Internal Medicine, 139(12), 979–986.

    Article  PubMed  Google Scholar 

  3. Ibanez, B., James, S., Agewall, S., et al. (2017). 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 39(2), 119–177.

    Article  Google Scholar 

  4. Thygesen, K., Alpert, J. S., Jaffe, A. S., et al. (2018). Fourth universal definition of myocardial infarction (2018). European Heart Journal, 40(3), 237–269.

    Article  Google Scholar 

  5. Yates, L. A., Norbury, C. J., & Gilbert, R. J. (2013). The long and short of microRNA. Cell., 153(3), 516–519.

    Article  CAS  PubMed  Google Scholar 

  6. Farazi, T. A., Horlings, H. M., Jelle, J., et al. (2011). MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Research., 71(13), 4443–4453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah, M. Y., & Calin, G. A. (2013). The mix of two worlds: Non-coding RNAs and hormones. Nucleic Acid Therapeutics., 23(1), 2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul, P., Chakraborty, A., Sarkar, D., et al. (2018). Interplay between miRNAs and human diseases. Journal of Cellular Physiology., 233(3), 2007–2018.

    Article  CAS  PubMed  Google Scholar 

  9. Van Rooij, E., & Kauppinen, S. (2014). Development of microRNA therapeutics is coming of age. EMBO Molecular Medicine, 6(7), 851–864.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, G. K., Zhu, J. Q., Zhang, J. T., et al. (2010). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31(6), 659–666.

    Article  PubMed  Google Scholar 

  11. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  12. DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.

  13. Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.

    Article  CAS  PubMed  Google Scholar 

  14. Summers, S. M., Long, B., April, M. D., Koyfman, A., & Hunter, C. J. (2018). High sensitivity troponin: The Sisyphean pursuit of zero percent miss rate for acute coronary syndrome in the ED. The American Journal of Emergency Medicine, 36(6), 1088–1097.

    Article  PubMed  Google Scholar 

  15. Cediel, G., Rueda, F., García, C., et al. (2017). Prognostic value of new-generation troponins in ST-segment–elevation myocardial infarction in the modern era: The RUTI-STEMI study. Journal of the American Heart Association., 6(12), e007252.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, T. K., Snow, T. A., Chen, Y., et al. (2014). High-sensitivity troponin level pre-catheterization predicts adverse cardiovascular outcomes after primary angioplasty for ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care., 3(2), 118–125.

    PubMed  Google Scholar 

  17. Giannitsis, E., Müller-Bardorff, M., Lehrke, S., et al. (2001). Admission troponin T level predicts clinical outcomes, TIMI flow, and myocardial tissue perfusion after primary percutaneous intervention for acute ST-segment elevation myocardial infarction. Circulation., 104(6), 630–635.

    Article  CAS  PubMed  Google Scholar 

  18. Björklund, E., Lindahl, B., Johanson, P., et al. (2004). Admission troponin T and measurement of ST-segment resolution at 60 min improve early risk stratification in ST-elevation myocardial infarction. European Heart Journal., 25(2), 113–120.

    Article  PubMed  Google Scholar 

  19. Reffelmann, T., & Kloner, R. A. (2006). The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion. Basic Research in Cardiology., 101(5), 359–372.

    Article  PubMed  Google Scholar 

  20. Devaux, Y., Vausort, M., Goretti, E., et al. (2012). Use of circulating microRNAs to diagnose acute myocardial infarction. Clinical Chemistry, 58(3), 559–567.

    Article  CAS  PubMed  Google Scholar 

  21. Widera, C., Gupta, S. K., Lorenzen, J. M., et al. (2011). Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology, 51(5), 872–875.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y. Q., Zhang, M. F., Wen, H. Y., et al. (2013). Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics., 68(1), 75–80.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  23. Devaux, Y., Mueller, M., Haaf, P., et al. (2015). Diagnostic and prognostic value of circulating micro RNA s in patients with acute chest pain. Journal of Internal Medicine, 277(2), 260–271.

    Article  CAS  PubMed  Google Scholar 

  24. Paiva, S., & Agbulut, O. (2017). MiRroring the multiple potentials of MicroRNAs in acute myocardial infarction. Frontiers in Cardiovascular Medicine, 4, 73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sayed, A. S., Xia, K., Yang, T. L., & Peng, J. (2013). Circulating microRNAs: A potential role in diagnosis and prognosis of acute myocardial infarction. Disease Markers, 35(5), 561–566.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gray, A. (2019). 011 High-sensitivity cardiac troponin on presentation to rule out myocardial infarction (HiSTORIC): a stepped-wedge cluster randomised controlled trial. Abstract 011. Emergency Medicine Journal, 36, 777.

    Article  Google Scholar 

  27. Korhan, E. A., Hakverdioglu, G., Ozlem, M., Yurekli, I., Gurbuz, A., & Alp, N. A. (2013). Geriatric patient profile in the cardiovascular surgery intensive care unit. The Journal of Pakistani Medical Association, 8(5.8), 3.

    Google Scholar 

  28. Meder, B., Keller, A., Vogel, B., et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  29. Feng, G., Yan, Z., Li, C., & Hou, Y. (2016). microRNA-208a in an early stage myocardial infarction rat model and the effect on cAMP-PKA signaling pathway. Molecular Medicine Reports, 14(2), 1631–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, L., Wang, W., Gao, S., & Wang, X. (2019). MicroRNA-208a directly targets Src kinase signaling inhibitor 1 to facilitate cell proliferation and invasion in non-small cell lung cancer. Molecular Medicine Reports, 20(4), 3140–3148.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Corsten, M. F., Dennert, R., Jochems, S., et al. (2010). Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics., 3(6), 499–506.

    PubMed  Google Scholar 

  32. Liu, X., Fan, Z., Zhao, T., et al. (2015). Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: An independent study of Han population. Experimental Gerontology, 72, 230–238.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, X., Yuan, L., Chen, F., et al. (2017). Circulating miR-208b: a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction. Clinical Laboratory, 63(1), 101–109.

    CAS  PubMed  Google Scholar 

  34. Gidlöf, O., Smith, J. G., Miyazu, K., et al. (2013). Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovascular Disorders, 13(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cortez-Dias, N., Costa, M. C., Carrilho-Ferreira, P., et al. (2016). Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circulation Journal, 80(10), 2183–2191.

    Article  CAS  PubMed  Google Scholar 

  36. Su, Q., Ye, Z., Sun, Y., Yang, H., & Li, L. (2018). Relationship between circulating miRNA-30e and no-reflow phenomenon in STEMI patients undergoing primary coronary intervention. Scandinavian Journal of Clinical and Laboratory Investigation, 78(4), 318–324.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Not applicable.

Source of Funding

This work was partially supported by a research grant from the American University in Cairo to Aboubakr Salama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboubakr Mohamed Salama.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The affiliation was given for Wael Ali Khalil, Manar Al-Zaky, Nader Talaat Kandil, and Mesbah Taha Hasanein was incorrect in this article as originally published and has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, A.M., Khalil, W.A., Al-Zaky, M. et al. MicroRNA-208a: a Good Diagnostic Marker and a Predictor of no-Reflow in STEMI Patients Undergoing Primary Percutaneuos Coronary Intervention. J. of Cardiovasc. Trans. Res. 13, 988–995 (2020). https://doi.org/10.1007/s12265-020-10020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10020-9

Keywords

Navigation