Skip to main content

Advertisement

Log in

Chemokines in Myocardial Infarction

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

In the infarcted myocardium, cardiomyocyte necrosis triggers an intense inflammatory reaction that not only is critical for cardiac repair, but also contributes to adverse remodeling and to the pathogenesis of heart failure. Both CC and CXC chemokines are markedly induced in the infarcted heart, bind to endothelial glycosaminoglycans, and regulate leukocyte trafficking and function. ELR+ CXC chemokines (such as CXCL8) control neutrophil infiltration, whereas CC chemokines (such as CCL2) mediate recruitment of mononuclear cells. Moreover, some members of the chemokine family (such as CXCL10 and CXCL12) may mediate leukocyte-independent actions, directly modulating fibroblast and vascular cell function. This review manuscript discusses our understanding of the role of the chemokines in regulation of injury, repair, and remodeling following myocardial infarction. Although several chemokines may be promising therapeutic targets in patients with myocardial infarction, clinical implementation of chemokine-based therapeutics is hampered by the broad effects of the chemokines in both injury and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roth, G. A., Huffman, M. D., Moran, A. E., Feigin, V., Mensah, G. A., Naghavi, M., et al. (2015). Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation, 132(17), 1667–1678. https://doi.org/10.1161/CIRCULATIONAHA.114.008720.

    Article  PubMed  Google Scholar 

  2. Reimer, K. A., Lowe, J. E., Rasmussen, M. M., & Jennings, R. B. (1977). The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation, 56(5), 786–794.

    Article  CAS  Google Scholar 

  3. Hjalmarson, A., Elmfeldt, D., Herlitz, J., Holmberg, S., Malek, I., Nyberg, G., et al. (1981). Effect on mortality of metoprolol in acute myocardial infarction. A double-blind randomised trial. Lancet, 2(8251), 823–827. https://doi.org/10.1016/s0140-6736(81)91101-6.

    Article  CAS  PubMed  Google Scholar 

  4. Pfeffer, M. A., Braunwald, E., Moye, L. A., Basta, L., Brown Jr., E. J., Cuddy, T. E., et al. (1992). Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med, 327(10), 669–677.

    Article  CAS  Google Scholar 

  5. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI) (1986). Lancet, 1(8478), 397-402.

  6. Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews. Cardiology, 11(5), 255–265. https://doi.org/10.1038/nrcardio.2014.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cavalera, M., & Frangogiannis, N. G. (2014). Targeting the chemokines in cardiac repair. Current Pharmaceutical Design, 20(12), 1971–1979. https://doi.org/10.2174/13816128113199990449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frangogiannis, N. G. (2007). Chemokines in ischemia and reperfusion. Thrombosis and Haemostasis, 97(5), 738–747.

    Article  CAS  Google Scholar 

  9. Sokol, C. L., & Luster, A. D. (2015). The chemokine system in innate immunity. Cold Spring Harbor Perspectives in Biology, 7(5). https://doi.org/10.1101/cshperspect.a016303.

  10. Kufareva, I., Salanga, C. L., & Handel, T. M. (2015). Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunology and Cell Biology, 93(4), 372–383. https://doi.org/10.1038/icb.2015.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahuja, S. K., & Murphy, P. M. (1996). The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. The Journal of Biological Chemistry, 271(34), 20545–20550. https://doi.org/10.1074/jbc.271.34.20545.

    Article  CAS  PubMed  Google Scholar 

  12. Clark-Lewis, I., Kim, K. S., Rajarathnam, K., Gong, J. H., Dewald, B., Moser, B., et al. (1995). Structure-activity relationships of chemokines. Journal of Leukocyte Biology, 57(5), 703–711. https://doi.org/10.1002/jlb.57.5.703.

    Article  CAS  PubMed  Google Scholar 

  13. Zlotnik, A., Morales, J., & Hedrick, J. A. (1999). Recent advances in chemokines and chemokine receptors. Critical Reviews in Immunology, 19(1), 1–47.

    CAS  PubMed  Google Scholar 

  14. Zlotnik, A., & Yoshie, O. (2012). The chemokine superfamily revisited. Immunity, 36(5), 705–716. https://doi.org/10.1016/j.immuni.2012.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Islam, S. A., Chang, D. S., Colvin, R. A., Byrne, M. H., McCully, M. L., Moser, B., et al. (2011). Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nature Immunology, 12(2), 167–177. https://doi.org/10.1038/ni.1984.

    Article  CAS  PubMed  Google Scholar 

  16. Jung, S., & Littman, D. R. (1999). Chemokine receptors in lymphoid organ homeostasis. Current Opinion in Immunology, 11(3), 319–325.

    Article  CAS  Google Scholar 

  17. Murphy, P. M. (1996). Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine & Growth Factor Reviews, 7(1), 47–64.

    Article  CAS  Google Scholar 

  18. Weathington, N. M., van Houwelingen, A. H., Noerager, B. D., Jackson, P. L., Kraneveld, A. D., Galin, F. S., et al. (2006). A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Medicine, 12(3), 317–323.

    Article  CAS  Google Scholar 

  19. Bernhagen, J., Krohn, R., Lue, H., Gregory, J. L., Zernecke, A., Koenen, R. R., et al. (2007). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 13(5), 587–596. https://doi.org/10.1038/nm1567.

    Article  CAS  PubMed  Google Scholar 

  20. Lacy, M., Kontos, C., Brandhofer, M., Hille, K., Groning, S., Sinitski, D., et al. (2018). Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Scientific Reports, 8(1), 5171. https://doi.org/10.1038/s41598-018-23554-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alampour-Rajabi, S., El Bounkari, O., Rot, A., Muller-Newen, G., Bachelerie, F., Gawaz, M., et al. (2015). MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. The FASEB Journal, 29(11), 4497–4511. https://doi.org/10.1096/fj.15-273904.

    Article  CAS  PubMed  Google Scholar 

  22. Soppert, J., Kraemer, S., Beckers, C., Averdunk, L., Mollmann, J., Denecke, B., et al. (2018). Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. Journal of the American Heart Association, 7(17), e009384. https://doi.org/10.1161/JAHA.118.009384.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation Research, 110(1), 159–173. https://doi.org/10.1161/CIRCRESAHA.111.243162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, B., Huang, S., Su, Y., Wu, Y. J., Hanna, A., Brickshawana, A., et al. (2019). Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circulation Research, 125(1), 55–70. https://doi.org/10.1161/CIRCRESAHA.119.315069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70C, 74–82.

    Article  Google Scholar 

  26. Kanisicak, O., Khalil, H., Ivey, M. J., Karch, J., Maliken, B. D., Correll, R. N., et al. (2016). Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 7, 12260. https://doi.org/10.1038/ncomms12260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kong, P., Shinde, A. V., Su, Y., Russo, I., Chen, B., Saxena, A., et al. (2018). Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium. Circulation, 137(7), 707–724. https://doi.org/10.1161/CIRCULATIONAHA.117.029622.

    Article  CAS  PubMed  Google Scholar 

  28. Frangogiannis, N. G., Michael, L. H., & Entman, M. L. (2000). Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovascular Research, 48(1), 89–100.

    Article  CAS  Google Scholar 

  29. Fu, X., Khalil, H., Kanisicak, O., Boyer, J. G., Vagnozzi, R. J., Maliken, B. D., et al. (2018). Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. The Journal of Clinical Investigation, 128(5), 2127–2143. https://doi.org/10.1172/JCI98215.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kakio, T., Matsumori, A., Ono, K., Ito, H., Matsushima, K., & Sasayama, S. (2000). Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Laboratory Investigation, 80(7), 1127–1136.

    Article  CAS  Google Scholar 

  31. Zouggari, Y., Ait-Oufella, H., Bonnin, P., Simon, T., Sage, A. P., Guerin, C., et al. (2013). B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 19(10), 1273–1280.

    Article  CAS  Google Scholar 

  32. Kumar, A. G., Ballantyne, C. M., Michael, L. H., Kukielka, G. L., Youker, K. A., Lindsey, M. L., et al. (1997). Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation, 95(3), 693–700.

    Article  CAS  Google Scholar 

  33. Frangogiannis, N. G., Mendoza, L. H., Lewallen, M., Michael, L. H., Smith, C. W., & Entman, M. L. (2001). Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. The FASEB Journal, 15(8), 1428–1430.

    Article  CAS  Google Scholar 

  34. Mylonas, K. J., Turner, N. A., Bageghni, S. A., Kenyon, C. J., White, C. I., McGregor, K., et al. (2017). 11beta-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI. The Journal of Endocrinology, 233(3), 315–327. https://doi.org/10.1530/JOE-16-0501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turner, N. A., Das, A., O'Regan, D. J., Ball, S. G., & Porter, K. E. (2011). Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation. The International Journal of Biochemistry & Cell Biology, 43(10), 1450–1458. https://doi.org/10.1016/j.biocel.2011.06.008.

    Article  CAS  Google Scholar 

  36. Zymek, P., Nah, D. Y., Bujak, M., Ren, G., Koerting, A., Leucker, T., et al. (2007). Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovascular Research, 74(2), 313–322. https://doi.org/10.1016/j.cardiores.2006.11.028.

    Article  CAS  PubMed  Google Scholar 

  37. Muhlstedt, S., Ghadge, S. K., Duchene, J., Qadri, F., Jarve, A., Vilianovich, L., et al. (2016). Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction. Journal of Molecular Medicine (Berlin, Germany), 94(9), 1005–1014. https://doi.org/10.1007/s00109-016-1432-1.

    Article  CAS  Google Scholar 

  38. Segret, A., Rucker-Martin, C., Pavoine, C., Flavigny, J., Deroubaix, E., Chatel, M. A., et al. (2007). Structural localization and expression of CXCL12 and CXCR4 in rat heart and isolated cardiac myocytes. The Journal of Histochemistry and Cytochemistry, 55(2), 141–150. https://doi.org/10.1369/jhc.6A7050.2006.

    Article  CAS  PubMed  Google Scholar 

  39. Ban, K., Ikeda, U., Takahashi, M., Kanbe, T., Kasahara, T., & Shimada, K. (1994). Expression of intercellular adhesion molecule-1 on rat cardiac myocytes by monocyte chemoattractant protein-1. Cardiovascular Research, 28(8), 1258–1262.

    Article  CAS  Google Scholar 

  40. Herzog, C., Lorenz, A., Gillmann, H. J., Chowdhury, A., Larmann, J., Harendza, T., et al. (2014). Thrombomodulin's lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling. Cardiovascular Research, 101(3), 400–410. https://doi.org/10.1093/cvr/cvt275.

    Article  CAS  PubMed  Google Scholar 

  41. Andrassy, M., Volz, H. C., Igwe, J. C., Funke, B., Eichberger, S. N., Kaya, Z., et al. (2008). High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation, 117(25), 3216–3226.

    Article  CAS  Google Scholar 

  42. Fiuza, C., Bustin, M., Talwar, S., Tropea, M., Gerstenberger, E., Shelhamer, J. H., et al. (2003). Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood, 101(7), 2652–2660. https://doi.org/10.1182/blood-2002-05-1300.

    Article  CAS  PubMed  Google Scholar 

  43. Rossini, A., Zacheo, A., Mocini, D., Totta, P., Facchiano, A., Castoldi, R., et al. (2008). HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 44(4), 683–693. https://doi.org/10.1016/j.yjmcc.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  44. Lugrin, J., Parapanov, R., Rosenblatt-Velin, N., Rignault-Clerc, S., Feihl, F., Waeber, B., et al. (2015). Cutting edge: IL-1alpha is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. Journal of Immunology, 194(2), 499–503. https://doi.org/10.4049/jimmunol.1401948.

    Article  CAS  Google Scholar 

  45. Chen, C., Feng, Y., Zou, L., Wang, L., Chen, H. H., Cai, J. Y., et al. (2014). Role of extracellular RNA and TLR3-Trif signaling in myocardial ischemia-reperfusion injury. Journal of the American Heart Association, 3(1), e000683. https://doi.org/10.1161/JAHA.113.000683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghigo, A., Franco, I., Morello, F., & Hirsch, E. (2014). Myocyte signalling in leucocyte recruitment to the heart. Cardiovascular Research, 102(2), 270–280. https://doi.org/10.1093/cvr/cvu030.

    Article  CAS  PubMed  Google Scholar 

  47. Dybdahl, B., Slordahl, S. A., Waage, A., Kierulf, P., Espevik, T., & Sundan, A. (2005). Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart, 91(3), 299–304.

    Article  CAS  Google Scholar 

  48. Newton, K., & Dixit, V. M. (2012). Signaling in innate immunity and inflammation. Cold Spring Harbor Perspectives in Biology, 4(3). https://doi.org/10.1101/cshperspect.a006049.

  49. Oyama, J., Blais Jr., C., Liu, X., Pu, M., Kobzik, L., Kelly, R. A., et al. (2004). Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation, 109(6), 784–789. https://doi.org/10.1161/01.CIR.0000112575.66565.84.

    Article  CAS  PubMed  Google Scholar 

  50. Kaczorowski, D. J., Nakao, A., Mollen, K. P., Vallabhaneni, R., Sugimoto, R., Kohmoto, J., et al. (2007). Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation, 84(10), 1279–1287. https://doi.org/10.1097/01.tp.0000287597.87571.17.

    Article  CAS  PubMed  Google Scholar 

  51. Feng, Y., Zhao, H., Xu, X., Buys, E. S., Raher, M. J., Bopassa, J. C., et al. (2008). Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. American Journal of Physiology. Heart and Circulatory Physiology, 295(3), H1311–H1318. https://doi.org/10.1152/ajpheart.00119.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ao, L., Zou, N., Cleveland Jr., J. C., Fullerton, D. A., & Meng, X. (2009). Myocardial TLR4 is a determinant of neutrophil infiltration after global myocardial ischemia: mediating KC and MCP-1 expression induced by extracellular HSC70. American Journal of Physiology. Heart and Circulatory Physiology, 297(1), H21–H28. https://doi.org/10.1152/ajpheart.00292.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Methe, H., Kim, J. O., Kofler, S., Weis, M., Nabauer, M., & Koglin, J. (2005). Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation, 111(20), 2654–2661. https://doi.org/10.1161/CIRCULATIONAHA.104.498865.

    Article  CAS  PubMed  Google Scholar 

  54. Satoh, M., Shimoda, Y., Maesawa, C., Akatsu, T., Ishikawa, Y., Minami, Y., et al. (2006). Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. International Journal of Cardiology, 109(2), 226–234. https://doi.org/10.1016/j.ijcard.2005.06.023.

    Article  PubMed  Google Scholar 

  55. Arslan, F., Smeets, M. B., O'Neill, L. A., Keogh, B., McGuirk, P., Timmers, L., et al. (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 121(1), 80–90.

    Article  CAS  Google Scholar 

  56. Wang, J. W., Fontes, M. S. C., Wang, X., Chong, S. Y., Kessler, E. L., Zhang, Y. N., et al. (2017). Leukocytic Toll-like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Scientific Reports, 7(1), 9193. https://doi.org/10.1038/s41598-017-09451-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, C., Ren, D., Wang, X., Ha, T., Liu, L., Lee, E. J., et al. (2014). Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury. Biochimica et Biophysica Acta, 1842(1), 22–31.

    Article  CAS  Google Scholar 

  58. de Kleijn, D. P. V., Chong, S. Y., Wang, X., Yatim, S., Fairhurst, A. M., Vernooij, F., et al. (2019). Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovascular Research, 115(12), 1791–1803. https://doi.org/10.1093/cvr/cvz057.

    Article  CAS  PubMed  Google Scholar 

  59. Feng, Y., Chen, H., Cai, J., Zou, L., Yan, D., Xu, G., et al. (2015). Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling. J Biol Chem, 290(44), 26688-26698, doi:10.1074/jbc. M115.661835.

  60. Frantz, S., Kelly, R. A., & Bourcier, T. (2001). Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. The Journal of Biological Chemistry, 276(7), 5197–5203. https://doi.org/10.1074/jbc.M009160200.

    Article  CAS  PubMed  Google Scholar 

  61. Yang, R., Song, Z., Wu, S., Wei, Z., Xu, Y., & Shen, X. (2018). Toll-like receptor 4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is associated with autophagy after myocardial infarction in a mouse model. Atherosclerosis, 279, 23–31. https://doi.org/10.1016/j.atherosclerosis.2018.10.018.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, W., Lavine, K. J., Epelman, S., Evans, S. A., Weinheimer, C. J., Barger, P. M., et al. (2015). Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. Journal of the American Heart Association, 4(6), e001993. https://doi.org/10.1161/JAHA.115.001993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Y., Si, R., Feng, Y., Chen, H. H., Zou, L., Wang, E., et al. (2011). Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. The Journal of Biological Chemistry, 286(36), 31308–31319.

    Article  CAS  Google Scholar 

  64. Ritchie, M. E. (1998). Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation, 98(17), 1707–1713. https://doi.org/10.1161/01.cir.98.17.1707.

    Article  CAS  PubMed  Google Scholar 

  65. Chandrasekar, B., Smith, J. B., & Freeman, G. L. (2001). Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation, 103(18), 2296–2302. https://doi.org/10.1161/01.cir.103.18.2296.

    Article  CAS  PubMed  Google Scholar 

  66. Chandrasekar, B., & Freeman, G. L. (1997). Induction of nuclear factor kappaB and activation protein 1 in postischemic myocardium. FEBS Letters, 401(1), 30–34. https://doi.org/10.1016/s0014-5793(96)01426-3.

    Article  CAS  PubMed  Google Scholar 

  67. Onai, Y., Suzuki, J., Kakuta, T., Maejima, Y., Haraguchi, G., Fukasawa, H., et al. (2004). Inhibition of IkappaB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. Cardiovascular Research, 63(1), 51–59. https://doi.org/10.1016/j.cardiores.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  68. Li, H. L., Zhuo, M. L., Wang, D., Wang, A. B., Cai, H., Sun, L. H., et al. (2007). Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation, 115(14), 1885–1894. https://doi.org/10.1161/CIRCULATIONAHA.106.656835.

    Article  CAS  PubMed  Google Scholar 

  69. Timmers, L., van Keulen, J. K., Hoefer, I. E., Meijs, M. F., van Middelaar, B., den Ouden, K., et al. (2009). Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circulation Research, 104(5), 699–706. https://doi.org/10.1161/CIRCRESAHA.108.189746.

    Article  CAS  PubMed  Google Scholar 

  70. Frantz, S., Tillmanns, J., Kuhlencordt, P. J., Schmidt, I., Adamek, A., Dienesch, C., et al. (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. The American Journal of Pathology, 171(2), 507–512. https://doi.org/10.2353/ajpath.2007.061042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pinckard, R. N., Olson, M. S., Giclas, P. C., Terry, R., Boyer, J. T., & O'Rourke, R. A. (1975). Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction. The Journal of Clinical Investigation, 56(3), 740–750. https://doi.org/10.1172/JCI108145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill, J. H., & Ward, P. A. (1971). The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. The Journal of Experimental Medicine, 133(4), 885–900. https://doi.org/10.1084/jem.133.4.885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Czermak, B. J., Sarma, V., Bless, N. M., Schmal, H., Friedl, H. P., & Ward, P. A. (1999). In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha. Journal of Immunology, 162(4), 2321–2325.

    CAS  Google Scholar 

  74. Kilgore, K. S., Park, J. L., Tanhehco, E. J., Booth, E. A., Marks, R. M., & Lucchesi, B. R. (1998). Attenuation of interleukin-8 expression in C6-deficient rabbits after myocardial ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 30(1), 75–85. https://doi.org/10.1006/jmcc.1997.0573.

    Article  CAS  PubMed  Google Scholar 

  75. Maekawa, N., Wada, H., Kanda, T., Niwa, T., Yamada, Y., Saito, K., et al. (2002). Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. Journal of the American College of Cardiology, 39(7), 1229–1235. https://doi.org/10.1016/s0735-1097(02)01738-2.

    Article  CAS  PubMed  Google Scholar 

  76. Bujak, M., Dobaczewski, M., Chatila, K., Mendoza, L. H., Li, N., Reddy, A., et al. (2008). Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. The American Journal of Pathology, 173(1), 57–67. https://doi.org/10.2353/ajpath.2008.070974.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Saxena, A., Chen, W., Su, Y., Rai, V., Uche, O. U., Li, N., et al. (2013). IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. Journal of Immunology, 191(9), 4838–4848. https://doi.org/10.4049/jimmunol.1300725.

    Article  CAS  Google Scholar 

  78. Frangogiannis, N. G., Lindsey, M. L., Michael, L. H., Youker, K. A., Bressler, R. B., Mendoza, L. H., et al. (1998). Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation, 98(7), 699–710. https://doi.org/10.1161/01.cir.98.7.699.

    Article  CAS  PubMed  Google Scholar 

  79. Somasundaram, P., Ren, G., Nagar, H., Kraemer, D., Mendoza, L., Michael, L. H., et al. (2005). Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. The Journal of Pathology, 205(1), 102–111. https://doi.org/10.1002/path.1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oynebraten, I., Bakke, O., Brandtzaeg, P., Johansen, F. E., & Haraldsen, G. (2004). Rapid chemokine secretion from endothelial cells originates from 2 distinct compartments. Blood, 104(2), 314–320. https://doi.org/10.1182/blood-2003-08-2891.

    Article  CAS  PubMed  Google Scholar 

  81. Detmers, P. A., Lo, S. K., Olsen-Egbert, E., Walz, A., Baggiolini, M., & Cohn, Z. A. (1990). Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. The Journal of Experimental Medicine, 171(4), 1155–1162. https://doi.org/10.1084/jem.171.4.1155.

    Article  CAS  PubMed  Google Scholar 

  82. Herter, J., & Zarbock, A. (2013). Integrin regulation during leukocyte recruitment. Journal of Immunology, 190(9), 4451–4457. https://doi.org/10.4049/jimmunol.1203179.

    Article  CAS  Google Scholar 

  83. Knall, C., Worthen, G. S., & Johnson, G. L. (1997). Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 3052–3057. https://doi.org/10.1073/pnas.94.7.3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Legler, D. F., & Thelen, M. (2018). New insights in chemokine signaling. F1000Res, 7, 95, doi:https://doi.org/10.12688/f1000research.13130.1.

  85. Sotsios, Y., & Ward, S. G. (2000). Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunological Reviews, 177, 217–235.

    Article  CAS  Google Scholar 

  86. Bujak, M., Dobaczewski, M., Gonzalez-Quesada, C., Xia, Y., Leucker, T., Zymek, P., et al. (2009). Induction of the CXC chemokine interferon-gamma-inducible protein 10 regulates the reparative response following myocardial infarction. Circulation Research, 105(10), 973–983. https://doi.org/10.1161/CIRCRESAHA.109.199471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tarzami, S. T., Miao, W., Mani, K., Lopez, L., Factor, S. M., Berman, J. W., et al. (2003). Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation, 108(19), 2387–2392. https://doi.org/10.1161/01.CIR.0000093192.72099.9A.

    Article  CAS  PubMed  Google Scholar 

  88. Jarrah, A. A., Schwarskopf, M., Wang, E. R., LaRocca, T., Dhume, A., Zhang, S., et al. (2018). SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis, 23(1), 79–91. https://doi.org/10.1007/s10495-017-1438-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., et al. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. The Journal of Biological Chemistry, 270(45), 27348–27357.

    Article  CAS  Google Scholar 

  90. Kukielka, G. L., Smith, C. W., LaRosa, G. J., Manning, A. M., Mendoza, L. H., Daly, T. J., et al. (1995). Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. The Journal of Clinical Investigation, 95(1), 89–103. https://doi.org/10.1172/JCI117680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ivey, C. L., Williams, F. M., Collins, P. D., Jose, P. J., & Williams, T. J. (1995). Neutrophil chemoattractants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and interleukin-8. The Journal of Clinical Investigation, 95(6), 2720–2728. https://doi.org/10.1172/JCI117974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeilhofer, H. U., & Schorr, W. (2000). Role of interleukin-8 in neutrophil signaling. Current Opinion in Hematology, 7(3), 178–182.

    Article  CAS  Google Scholar 

  93. Boyle Jr., E. M., Kovacich, J. C., Hebert, C. A., Canty Jr., T. G., Chi, E., Morgan, E. N., et al. (1998). Inhibition of interleukin-8 blocks myocardial ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery, 116(1), 114–121. https://doi.org/10.1016/S0022-5223(98)70249-1.

    Article  CAS  PubMed  Google Scholar 

  94. Oral, H., Kanzler, I., Tuchscheerer, N., Curaj, A., Simsekyilmaz, S., Sonmez, T. T., et al. (2013). CXC chemokine KC fails to induce neutrophil infiltration and neoangiogenesis in a mouse model of myocardial infarction. Journal of Molecular and Cellular Cardiology, 60, 1–7. https://doi.org/10.1016/j.yjmcc.2013.04.006.

    Article  CAS  PubMed  Google Scholar 

  95. Xie, Q., Sun, Z., Chen, M., Zhong, Q., Yang, T., & Yi, J. (2015). IL-8 up-regulates proliferative angiogenesis in ischemic myocardium in rabbits through phosphorylation of Akt/GSK-3beta(ser9) dependent pathways. International Journal of Clinical and Experimental Medicine, 8(8), 12498–12508.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shetelig, C., Limalanathan, S., Hoffmann, P., Seljeflot, I., Gran, J. M., Eritsland, J., et al. (2018). Association of IL-8 with infarct size and clinical outcomes in patients With STEMI. Journal of the American College of Cardiology, 72(2), 187–198. https://doi.org/10.1016/j.jacc.2018.04.053.

    Article  CAS  PubMed  Google Scholar 

  97. Moser, B., & Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Nature Immunology, 2(2), 123–128. https://doi.org/10.1038/84219.

    Article  CAS  PubMed  Google Scholar 

  98. Fiorina, P., Ansari, M. J., Jurewicz, M., Barry, M., Ricchiuti, V., Smith, R. N., et al. (2006). Role of CXC chemokine receptor 3 pathway in renal ischemic injury. J Am Soc Nephrol, 17(3), 716–723. https://doi.org/10.1681/ASN.2005090954.

    Article  CAS  PubMed  Google Scholar 

  99. Khan, I. A., MacLean, J. A., Lee, F. S., Casciotti, L., DeHaan, E., Schwartzman, J. D., et al. (2000). IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity, 12(5), 483–494. https://doi.org/10.1016/s1074-7613(00)80200-9.

    Article  CAS  PubMed  Google Scholar 

  100. Shiraha, H., Glading, A., Gupta, K., & Wells, A. (1999). IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. The Journal of Cell Biology, 146(1), 243–254. https://doi.org/10.1083/jcb.146.1.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Strieter, R. M., Polverini, P. J., Arenberg, D. A., Walz, A., Opdenakker, G., Van Damme, J., et al. (1995). Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. Journal of Leukocyte Biology, 57(5), 752–762. https://doi.org/10.1002/jlb.57.5.752.

    Article  CAS  PubMed  Google Scholar 

  102. Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., et al. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. The Journal of Biological Chemistry, 270(45), 27348–27357. https://doi.org/10.1074/jbc.270.45.27348.

    Article  CAS  PubMed  Google Scholar 

  103. Dewald, O., Ren, G., Duerr, G. D., Zoerlein, M., Klemm, C., Gersch, C., et al. (2004). Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. The American Journal of Pathology, 164(2), 665–677. https://doi.org/10.1016/S0002-9440(10)63154-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Loetscher, M., Gerber, B., Loetscher, P., Jones, S. A., Piali, L., Clark-Lewis, I., et al. (1996). Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. The Journal of Experimental Medicine, 184(3), 963–969. https://doi.org/10.1084/jem.184.3.963.

    Article  CAS  PubMed  Google Scholar 

  105. Saxena, A., Bujak, M., Frunza, O., Dobaczewski, M., Gonzalez-Quesada, C., Lu, B., et al. (2014). CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovascular Research, 103(2), 217–227. https://doi.org/10.1093/cvr/cvu138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382(6592), 635–638. https://doi.org/10.1038/382635a0.

    Article  CAS  PubMed  Google Scholar 

  107. Salvucci, O., Yao, L., Villalba, S., Sajewicz, A., Pittaluga, S., & Tosato, G. (2002). Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 99(8), 2703–2711. https://doi.org/10.1182/blood.v99.8.2703.

    Article  CAS  PubMed  Google Scholar 

  108. Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., Anver, M. R., et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. The American Journal of Pathology, 154(4), 1125–1135. https://doi.org/10.1016/s0002-9440(10)65365-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293–300. https://doi.org/10.1023/a:1012808525370.

    Article  CAS  PubMed  Google Scholar 

  110. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703. https://doi.org/10.1016/S0140-6736(03)14232-8.

    Article  CAS  PubMed  Google Scholar 

  111. Frangogiannis, N. G. (2011). The stromal cell-derived factor-1/CXCR4 axis in cardiac injury and repair. Journal of the American College of Cardiology, 58(23), 2424–2426. https://doi.org/10.1016/j.jacc.2011.08.031.

    Article  PubMed  Google Scholar 

  112. Uematsu, M., Yoshizaki, T., Shimizu, T., Obata, J. E., Nakamura, T., Fujioka, D., et al. (2015). Sustained myocardial production of stromal cell-derived factor-1alpha was associated with left ventricular adverse remodeling in patients with myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 309(10), H1764–H1771. https://doi.org/10.1152/ajpheart.00493.2015.

    Article  CAS  PubMed  Google Scholar 

  113. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864. https://doi.org/10.1038/nm1075.

    Article  CAS  PubMed  Google Scholar 

  114. Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305. https://doi.org/10.1161/01.CIR.0000147780.30124.CF.

    Article  PubMed  Google Scholar 

  115. Ma, J., Ge, J., Zhang, S., Sun, A., Shen, J., Chen, L., et al. (2005). Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Research in Cardiology, 100(3), 217–223. https://doi.org/10.1007/s00395-005-0521-z.

    Article  CAS  PubMed  Google Scholar 

  116. Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W., Shaw, R. M., et al. (2008). Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation, 117(17), 2224–2231. https://doi.org/10.1161/CIRCULATIONAHA.107.694992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A. T., Popovic, Z. B., et al. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal, 21(12), 3197–3207. https://doi.org/10.1096/fj.06-6558com.

    Article  CAS  PubMed  Google Scholar 

  118. Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49(6), 966–971. https://doi.org/10.1111/j.1442-200X.2007.02491.x.

    Article  PubMed  Google Scholar 

  119. MacArthur Jr., J. W., Purcell, B. P., Shudo, Y., Cohen, J. E., Fairman, A., Trubelja, A., et al. (2013). Sustained release of engineered stromal cell-derived factor 1-alpha from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation, 128(11 Suppl 1), S79–S86. https://doi.org/10.1161/CIRCULATIONAHA.112.000343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Macarthur Jr., J. W., Cohen, J. E., McGarvey, J. R., Shudo, Y., Patel, J. B., Trubelja, A., et al. (2014). Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1alpha analog in a translational ovine myocardial infarction model. Circulation Research, 114(4), 650–659. https://doi.org/10.1161/CIRCRESAHA.114.302884.

    Article  CAS  PubMed  Google Scholar 

  121. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803. https://doi.org/10.1016/j.yjmcc.2007.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mayorga, M. E., Kiedrowski, M., McCallinhart, P., Forudi, F., Ockunzzi, J., Weber, K., et al. (2018). Role of SDF-1:CXCR4 in impaired post-myocardial infarction cardiac repair in diabetes. Stem Cells Translational Medicine, 7(1), 115–124. https://doi.org/10.1002/sctm.17-0172.

    Article  CAS  PubMed  Google Scholar 

  123. Cheng, M., Huang, K., Zhou, J., Yan, D., Tang, Y. L., Zhao, T. C., et al. (2015). A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. Journal of Molecular and Cellular Cardiology, 81, 49–53. https://doi.org/10.1016/j.yjmcc.2015.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, M., Hu, R., Yang, Y., Xiang, L., & Mu, Y. (2019). In vivo ultrasound molecular imaging of SDF-1 expression in a swine model of acute myocardial infarction. Frontiers in Pharmacology, 10, 899. https://doi.org/10.3389/fphar.2019.00899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang, F. Y., Xia, T. L., Li, J. L., Li, C. M., Zhao, Z. G., Lei, W. H., et al. (2019). The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction. Journal of Cellular and Molecular Medicine, 23(11), 7673–7684. https://doi.org/10.1111/jcmm.14640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goldstone, A. B., Burnett, C. E., Cohen, J. E., Paulsen, M. J., Eskandari, A., Edwards, B. E., et al. (2018). SDF 1-alpha attenuates myocardial injury without altering the direct contribution of circulating cells. Journal of Cardiovascular Translational Research, 11(4), 274–284. https://doi.org/10.1007/s12265-017-9772-y.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Liu, Y., Gao, S., Wang, Z., Yang, Y., Huo, H., & Tian, X. (2016). Effect of stromal cell-derived factor-1 on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction. Experimental and Therapeutic Medicine, 12(5), 3282–3286. https://doi.org/10.3892/etm.2016.3770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663. https://doi.org/10.1161/CIRCULATIONAHA.106.672451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, J., Chemaly, E., Liang, L., Kho, C., Lee, A., Park, J., et al. (2010). Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. The American Journal of Pathology, 176(4), 1705–1715. https://doi.org/10.2353/ajpath.2010.090451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dai, S., Yuan, F., Mu, J., Li, C., Chen, N., Guo, S., et al. (2010). Chronic AMD3100 antagonism of SDF-1alpha-CXCR4 exacerbates cardiac dysfunction and remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 49(4), 587–597. https://doi.org/10.1016/j.yjmcc.2010.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Proulx, C., El-Helou, V., Gosselin, H., Clement, R., Gillis, M. A., Villeneuve, L., et al. (2007). Antagonism of stromal cell-derived factor-1alpha reduces infarct size and improves ventricular function after myocardial infarction. Pflügers Archiv, 455(2), 241–250. https://doi.org/10.1007/s00424-007-0284-5.

    Article  CAS  PubMed  Google Scholar 

  132. Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., et al. (2010). CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11008–11013. https://doi.org/10.1073/pnas.0914248107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hao, H., Hu, S., Chen, H., Bu, D., Zhu, L., Xu, C., et al. (2017). Loss of endothelial CXCR7 impairs vascular homeostasis and cardiac remodeling after myocardial infarction: implications for cardiovascular drug discovery. Circulation, 135(13), 1253–1264. https://doi.org/10.1161/CIRCULATIONAHA.116.023027.

    Article  CAS  PubMed  Google Scholar 

  134. Das, S., Goldstone, A. B., Wang, H., Farry, J., D'Amato, G., Paulsen, M. J., et al. (2019). A unique collateral artery development program promotes neonatal heart regeneration. Cell, 176(5), 1128-1142 e1118, doi:https://doi.org/10.1016/j.cell.2018.12.023.

  135. Dewald, O., Zymek, P., Winkelmann, K., Koerting, A., Ren, G., Abou-Khamis, T., et al. (2005). CCL2/Monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research, 96(8), 881–889. https://doi.org/10.1161/01.RES.0000163017.13772.3a.

    Article  CAS  PubMed  Google Scholar 

  136. Ono, K., Matsumori, A., Furukawa, Y., Igata, H., Shioi, T., Matsushima, K., et al. (1999). Prevention of myocardial reperfusion injury in rats by an antibody against monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Laboratory Investigation, 79(2), 195–203.

    CAS  PubMed  Google Scholar 

  137. Tarzami, S. T., Cheng, R., Miao, W., Kitsis, R. N., & Berman, J. W. (2002). Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death. Journal of Molecular and Cellular Cardiology, 34(2), 209–221. https://doi.org/10.1006/jmcc.2001.1503.

    Article  CAS  PubMed  Google Scholar 

  138. Pinto, A. R., Ilinykh, A., Ivey, M. J., Kuwabara, J. T., D’Antoni, M. L., Debuque, R., et al. (2016). Revisiting cardiac cellular composition. Circulation Research, 118(3), 400–409. https://doi.org/10.1161/CIRCRESAHA.115.307778.

    Article  CAS  PubMed  Google Scholar 

  139. Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., et al. (2014). Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40(1), 91–104. https://doi.org/10.1016/j.immuni.2013.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Epelman, S., Lavine, K. J., & Randolph, G. J. (2014). Origin and functions of tissue macrophages. Immunity, 41(1), 21–35. https://doi.org/10.1016/j.immuni.2014.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lavine, K. J., Epelman, S., Uchida, K., Weber, K. J., Nichols, C. G., Schilling, J. D., et al. (2014). Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 111(45), 16029–16034. https://doi.org/10.1073/pnas.1406508111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leid, J., Carrelha, J., Boukarabila, H., Epelman, S., Jacobsen, S. E., & Lavine, K. J. (2016). Primitive embryonic macrophages are required for coronary development and maturation. Circulation Research, 118(10), 1498–1511. https://doi.org/10.1161/CIRCRESAHA.115.308270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bajpai, G., Bredemeyer, A., Li, W., Zaitsev, K., Koenig, A. L., Lokshina, I., et al. (2019). Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circulation Research, 124(2), 263–278. https://doi.org/10.1161/CIRCRESAHA.118.314028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Heidt, T., Courties, G., Dutta, P., Sager, H. B., Sebas, M., Iwamoto, Y., et al. (2014). Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circulation Research, 115(2), 284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Frangogiannis, N. G., Mendoza, L. H., Ren, G., Akrivakis, S., Jackson, P. L., Michael, L. H., et al. (2003). MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. American Journal of Physiology. Heart and Circulatory Physiology, 285(2), H483–H492.

    Article  CAS  Google Scholar 

  146. Sager, H. B., Hulsmans, M., Lavine, K. J., Moreira, M. B., Heidt, T., Courties, G., et al. (2016). Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circulation Research, 119(7), 853–864. https://doi.org/10.1161/CIRCRESAHA.116.309001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liehn, E. A., Piccinini, A. M., Koenen, R. R., Soehnlein, O., Adage, T., Fatu, R., et al. (2010). A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. Journal of the American College of Cardiology, 56(22), 1847–1857. https://doi.org/10.1016/j.jacc.2010.04.066.

    Article  CAS  PubMed  Google Scholar 

  148. Al-Amran, F. G., Manson, M. Z., Hanley, T. K., & Hainz, D. L. (2014). Blockade of the monocyte chemoattractant protein-1 receptor pathway ameliorates myocardial injury in animal models of ischemia and reperfusion. Pharmacology, 93(5-6), 296–302. https://doi.org/10.1159/000363657.

    Article  CAS  PubMed  Google Scholar 

  149. Grisanti, L. A., Traynham, C. J., Repas, A. A., Gao, E., Koch, W. J., & Tilley, D. G. (2016). beta2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proceedings of the National Academy of Sciences of the United States of America, 113(52), 15126–15131. https://doi.org/10.1073/pnas.1611023114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, J., Seo, M. J., Deci, M. B., Weil, B. R., Canty, J. M., & Nguyen, J. (2018). Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. International Journal of Nanomedicine, 13, 6441–6451. https://doi.org/10.2147/IJN.S178650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29(11), 1005–1010. https://doi.org/10.1038/nbt.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lu, W., Xie, Z., Tang, Y., Bai, L., Yao, Y., Fu, C., et al. (2015). Photoluminescent mesoporous silicon nanoparticles with siCCR2 improve the effects of mesenchymal stromal cell transplantation after acute myocardial infarction. Theranostics, 5(10), 1068–1082. https://doi.org/10.7150/thno.11517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kaikita, K., Hayasaki, T., Okuma, T., Kuziel, W. A., Ogawa, H., & Takeya, M. (2004). Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. The American Journal of Pathology, 165(2), 439–447. https://doi.org/10.1016/S0002-9440(10)63309-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204(12), 3037–3047. https://doi.org/10.1084/jem.20070885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gavrilin, M. A., Deucher, M. F., Boeckman, F., & Kolattukudy, P. E. (2000). Monocyte chemotactic protein 1 upregulates IL-1beta expression in human monocytes. Biochemical and Biophysical Research Communications, 277(1), 37–42. https://doi.org/10.1006/bbrc.2000.3619.

    Article  CAS  PubMed  Google Scholar 

  156. Jiang, Y., Beller, D. I., Frendl, G., & Graves, D. T. (1992). Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. Journal of Immunology, 148(8), 2423–2428.

    CAS  Google Scholar 

  157. Sierra-Filardi, E., Nieto, C., Dominguez-Soto, A., Barroso, R., Sanchez-Mateos, P., Puig-Kroger, A., et al. (2014). CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. Journal of Immunology, 192(8), 3858–3867. https://doi.org/10.4049/jimmunol.1302821.

    Article  CAS  Google Scholar 

  158. Frangogiannis, N. G., Dewald, O., Xia, Y., Ren, G., Haudek, S., Leucker, T., et al. (2007). Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation, 115(5), 584–592.

    Article  CAS  Google Scholar 

  159. Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., et al. (2007). Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 25(1), 245–251. https://doi.org/10.1634/stemcells.2006-0293.

    Article  CAS  PubMed  Google Scholar 

  160. Montecucco, F., Braunersreuther, V., Lenglet, S., Delattre, B. M., Pelli, G., Buatois, V., et al. (2012). CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. European Heart Journal, 33(15), 1964–1974. https://doi.org/10.1093/eurheartj/ehr127.

    Article  CAS  PubMed  Google Scholar 

  161. Huang, Y., Wang, D., Wang, X., Zhang, Y., Liu, T., Chen, Y., et al. (2016). Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Scientific Reports, 6, 32660. https://doi.org/10.1038/srep32660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, Y., Bai, J., Tang, L., Zhang, P., & Pu, J. (2015). Anti-CCL21 antibody attenuates infarct size and improves cardiac remodeling after myocardial infarction. Cellular Physiology and Biochemistry, 37(3), 979–990. https://doi.org/10.1159/000430224.

    Article  CAS  PubMed  Google Scholar 

  163. Parissis, J. T., Adamopoulos, S., Venetsanou, K. F., Mentzikof, D. G., Karas, S. M., & Kremastinos, D. T. (2002). Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. Journal of Interferon & Cytokine Research, 22(2), 223–229. https://doi.org/10.1089/107999002753536194.

    Article  CAS  Google Scholar 

  164. Braunersreuther, V., Montecucco, F., Pelli, G., Galan, K., Proudfoot, A. E., Belin, A., et al. (2013). Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice. Thrombosis and Haemostasis, 110(4), 807–825. https://doi.org/10.1160/TH13-04-0297.

    Article  CAS  PubMed  Google Scholar 

  165. Liehn, E. A., Merx, M. W., Postea, O., Becher, S., Djalali-Talab, Y., Shagdarsuren, E., et al. (2008). Ccr1 deficiency reduces inflammatory remodelling and preserves left ventricular function after myocardial infarction. Journal of Cellular and Molecular Medicine, 12(2), 496–506. https://doi.org/10.1111/j.1582-4934.2007.00194.x.

    Article  CAS  PubMed  Google Scholar 

  166. Combadiere, C., Ahuja, S. K., Tiffany, H. L., & Murphy, P. M. (1996). Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. Journal of Leukocyte Biology, 60(1), 147–152. https://doi.org/10.1002/jlb.60.1.147.

    Article  CAS  PubMed  Google Scholar 

  167. Dobaczewski, M., Xia, Y., Bujak, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. The American Journal of Pathology, 176(5), 2177–2187. https://doi.org/10.2353/ajpath.2010.090759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zamilpa, R., Kanakia, R., Cigarroa, J. t., Dai, Q., Escobar, G. P., Martinez, H., et al. (2011). CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 300(4), H1418–H1426. https://doi.org/10.1152/ajpheart.01002.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xuan, W., Liao, Y., Chen, B., Huang, Q., Xu, D., Liu, Y., et al. (2011). Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovascular Research, 92(3), 385–393. https://doi.org/10.1093/cvr/cvr221.

    Article  CAS  PubMed  Google Scholar 

  170. Husberg, C., Nygard, S., Finsen, A. V., Damas, J. K., Frigessi, A., Oie, E., et al. (2008). Cytokine expression profiling of the myocardium reveals a role for CX3CL1 (fractalkine) in heart failure. Journal of Molecular and Cellular Cardiology, 45(2), 261–269.

    Article  CAS  Google Scholar 

  171. Boag, S. E., Das, R., Shmeleva, E. V., Bagnall, A., Egred, M., Howard, N., et al. (2015). T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. The Journal of Clinical Investigation, 125(8), 3063–3076. https://doi.org/10.1172/JCI80055.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Xu, B., Qian, Y., Zhao, Y., Fang, Z., Tang, K., Zhou, N., et al. (2019). Prognostic value of fractalkine/CX3CL1 concentration in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Cytokine, 113, 365–370. https://doi.org/10.1016/j.cyto.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  173. Gu, X., Xu, J., Yang, X. P., Peterson, E., & Harding, P. (2015). Fractalkine neutralization improves cardiac function after myocardial infarction. Experimental Physiology, 100(7), 805–817. https://doi.org/10.1113/EP085104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Draganova, L., Redgrave, R., Tual-Chalot, S., Marsh, S., Arthur, H., & Spyridopoulos, I. (2019). BS31 The role of fractalkine and CX3CR1-expressing lymphocytes during myocardial ischaemia/reperfusion injury. Heart, 105(Suppl 6), A160–A160. https://doi.org/10.1136/heartjnl-2019-BCS.194.

    Article  Google Scholar 

  175. Huang, S., & Frangogiannis, N. G. (2018). Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. British Journal of Pharmacology, 175(9), 1377–1400. https://doi.org/10.1111/bph.14155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chung, E. S., Miller, L., Patel, A. N., Anderson, R. D., Mendelsohn, F. O., Traverse, J., et al. (2015). Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. European Heart Journal, 36(33), 2228–2238. https://doi.org/10.1093/eurheartj/ehv254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Agarwal, U., Ghalayini, W., Dong, F., Weber, K., Zou, Y. R., Rabbany, S. Y., et al. (2010). Role of cardiac myocyte CXCR4 expression in development and left ventricular remodeling after acute myocardial infarction. Circulation Research, 107(5), 667–676. https://doi.org/10.1161/CIRCRESAHA.110.223289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Liehn, E. A., Tuchscheerer, N., Kanzler, I., Drechsler, M., Fraemohs, L., Schuh, A., et al. (2011). Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. Journal of the American College of Cardiology, 58(23), 2415–2423. https://doi.org/10.1016/j.jacc.2011.08.033.

    Article  PubMed  Google Scholar 

  179. Hayasaki, T., Kaikita, K., Okuma, T., Yamamoto, E., Kuziel, W. A., Ogawa, H., et al. (2006). CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circulation Journal, 70(3), 342–351. https://doi.org/10.1253/circj.70.342.

    Article  CAS  PubMed  Google Scholar 

  180. Hayashidani, S., Tsutsui, H., Shiomi, T., Ikeuchi, M., Matsusaka, H., Suematsu, N., et al. (2003). Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 108(17), 2134–2140. https://doi.org/10.1161/01.CIR.0000092890.29552.22.

    Article  CAS  PubMed  Google Scholar 

  181. Morimoto, H., Hirose, M., Takahashi, M., Kawaguchi, M., Ise, H., Kolattukudy, P. E., et al. (2008). MCP-1 induces cardioprotection against ischaemia/reperfusion injury: role of reactive oxygen species. Cardiovascular Research, 78(3), 554–562. https://doi.org/10.1093/cvr/cvn035.

    Article  CAS  PubMed  Google Scholar 

  182. Shen, B., Li, J., Gao, L., Zhang, J., & Yang, B. (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Molecular and Cellular Biochemistry, 378(1-2), 137–144. https://doi.org/10.1007/s11010-013-1604-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr Frangogiannis’ laboratory is supported by NIH R01 grants HL76246, HL85440, and HL149407, and by Department of Defense grants PR151029 and PR181464. Dr Chen is supported by an American Heart Association post-doctoral award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Saskia de Jager oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Frangogiannis, N.G. Chemokines in Myocardial Infarction. J. of Cardiovasc. Trans. Res. 14, 35–52 (2021). https://doi.org/10.1007/s12265-020-10006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10006-7

Keywords

Navigation