Skip to main content

Advertisement

Log in

High Plasma Myeloperoxidase Is Associated with Plaque Erosion in Patients with ST-Segment Elevation Myocardial Infarction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

We aimed to investigate the association between plasma myeloperoxidase (MPO) and plaque erosion in patients presenting with ST-segment elevation myocardial infarction (STEMI). Two hundred and fifty-two patients with STEMI who underwent optical coherence tomography (OCT) evaluation of culprit lesion were prospectively enrolled. Of them, 92 and 80 patients were identified with plaque rupture and plaque erosion, respectively. Plasma MPO levels, measured using enzyme-linked immunoassay, were significantly higher in patients with plaque erosion versus plaque rupture (median (interquartile range), 96.3 ng/mL [44.2–173.3] vs. 41.7 ng/mL (29.2–66.3); p < 0.001). Multivariable logistic regression analysis indicated that plasma MPO was independently associated with plaque erosion (odds ratio, 3.25; 95% confidence interval, 1.37–7.76; p = 0.008). The area under the receiver-operating characteristic curve was 0.75 for MPO to discriminate between plaque erosion and plaque rupture. Plasma MPO level significantly correlated with plaque erosion in patients with STEMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

AUC:

Area under the receiver-operating characteristic curve

eGFR:

Estimated glomerular filtration rate

MPO:

Myeloperoxidase

OCT:

Optical coherence tomography

PCI:

Percutaneous coronary intervention

STEMI:

ST-segment elevation myocardial infarction

References

  1. Vedanthan, R., Seligman, B., & Fuster, V. (2014). Global perspective on acute coronary syndrome: a burden on the young and poor. Circulation Research, 114(12), 1959–1975. https://doi.org/10.1161/CIRCRESAHA.114.302782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farb, A., Tang, A. L., Burke, A. P., Sessums, L., Liang, Y., & Virmani, R. (1995). Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation, 92(7), 1701–1709.

    Article  CAS  PubMed  Google Scholar 

  3. Davies, M. J., & Thomas, A. (1984). Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. The New England Journal of Medicine, 310(18), 1137–1140. https://doi.org/10.1056/NEJM198405033101801.

    Article  CAS  PubMed  Google Scholar 

  4. Virmani, R., Burke, A. P., Farb, A., & Kolodgie, F. D. (2006). Pathology of the vulnerable plaque. Journal of the American College of Cardiology, 47(8 Suppl), C13–C18. https://doi.org/10.1016/j.jacc.2005.10.065.

    Article  CAS  PubMed  Google Scholar 

  5. Kolodgie, F. D., Burke, A. P., Farb, A., Weber, D. K., Kutys, R., Wight, T. N., et al. (2002). Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(10), 1642–1648.

    Article  CAS  PubMed  Google Scholar 

  6. Libby, P. (2001). Current concepts of the pathogenesis of the acute coronary syndromes. Circulation, 104(3), 365–372.

    Article  CAS  PubMed  Google Scholar 

  7. Rausch, P. G., Pryzwansky, K. B., & Spitznagel, J. K. (1978). Immunocytochemical identification of azurophilic and specific granule markers in the giant granules of Chediak-Higashi neutrophils. The New England Journal of Medicine, 298(13), 693–698. https://doi.org/10.1056/nejm197803302981301.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., et al. (2002). Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. The Journal of Biological Chemistry, 277(48), 46116–46122. https://doi.org/10.1074/jbc.M209124200.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, R., Shen, Z., Nauseef, W. M., & Hazen, S. L. (2002). Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood, 99(5), 1802–1810.

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama, S., Kugiyama, K., Aikawa, M., Nakamura, S., Ogawa, H., & Libby, P. (2004). Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(7), 1309–1314. https://doi.org/10.1161/01.ATV.0000131784.50633.4f.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrante, G., Nakano, M., Prati, F., Niccoli, G., Mallus, M. T., Ramazzotti, V., et al. (2010). High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation, 122(24), 2505–2513. https://doi.org/10.1161/circulationaha.110.955302.

    Article  CAS  PubMed  Google Scholar 

  12. Kubo, T., Imanishi, T., Takarada, S., Kuroi, A., Ueno, S., Yamano, T., et al. (2007). Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. Journal of the American College of Cardiology, 50(10), 933–939. https://doi.org/10.1016/j.jacc.2007.04.082.

    Article  PubMed  Google Scholar 

  13. Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., et al. (2018). 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: he task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 39(2), 119–177. https://doi.org/10.1093/eurheartj/ehx393.

    Article  PubMed  Google Scholar 

  14. Prati, F., Regar, E., Mintz, G. S., Arbustini, E., Di Mario, C., Jang, I. K., et al. (2010). Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal, 31(4), 401–415. https://doi.org/10.1093/eurheartj/ehp433.

    Article  PubMed  Google Scholar 

  15. Jia, H., Abtahian, F., Aguirre, A. D., Lee, S., Chia, S., Lowe, H., et al. (2013). In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. Journal of the American College of Cardiology, 62(19), 1748–1758. https://doi.org/10.1016/j.jacc.2013.05.071.

    Article  PubMed  Google Scholar 

  16. Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro 3rd, A. F., Feldman, H. I., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dai, J., Xing, L., Jia, H., Zhu, Y., Zhang, S., Hu, S., et al. (2018). In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study. European Heart Journal, 39(22), 2077–2085. https://doi.org/10.1093/eurheartj/ehy101.

    Article  PubMed  Google Scholar 

  18. Saia, F., Komukai, K., Capodanno, D., Sirbu, V., Musumeci, G., Boccuzzi, G., et al. (2015). Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC. Cardiovascular Imaging, 8(5), 566–575. https://doi.org/10.1016/j.jcmg.2015.01.018.

    Article  PubMed  Google Scholar 

  19. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A., & Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1262–1275.

    Article  CAS  PubMed  Google Scholar 

  20. Naruko, T., Ueda, M., Haze, K., van der Wal, A. C., van der Loos, C. M., Itoh, A., et al. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23), 2894–2900. https://doi.org/10.1161/01.cir.0000042674.89762.20.

    Article  PubMed  Google Scholar 

  21. Teng, N., Maghzal, G. J., Talib, J., Rashid, I., Lau, A. K., & Stocker, R. (2017). The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Report : Communications in Free Radical Research, 22(2), 51–73. https://doi.org/10.1080/13510002.2016.1256119.

    Article  CAS  PubMed  Google Scholar 

  22. Folco, E. J., Mawson, T. L., Vromman, A., Bernardes-Souza, B., Franck, G., Persson, O., et al. (2018). Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/atvbaha.118.311150.

  23. Franck, G., Mawson, T. L., Folco, E. J., Molinaro, R., Ruvkun, V., Engelbertsen, D., et al. (2018). Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circulation Research, 123(1), 33–42. https://doi.org/10.1161/circresaha.117.312494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klinke, A., Nussbaum, C., Kubala, L., Friedrichs, K., Rudolph, T. K., Rudolph, V., et al. (2011). Myeloperoxidase attracts neutrophils by physical forces. Blood, 117(4), 1350–1358. https://doi.org/10.1182/blood-2010-05-284513.

    Article  CAS  PubMed  Google Scholar 

  25. Manchanda, K., Kolarova, H., Kerkenpass, C., Mollenhauer, M., Vitecek, J., Rudolph, V., et al. (2018). MPO (myeloperoxidase) reduces endothelial glycocalyx thickness dependent on its cationic charge. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(8), 1859–1867. https://doi.org/10.1161/atvbaha.118.311143.

    Article  CAS  PubMed  Google Scholar 

  26. Chandran, S., Watkins, J., Abdul-Aziz, A., Shafat, M., Calvert, P. A., Bowles, K. M., et al. (2017). Inflammatory differences in plaque erosion and rupture in patients with ST-segment elevation myocardial infarction. Journal of the American Heart Association, 6(5). https://doi.org/10.1161/jaha.117.005868.

  27. Niccoli, G., Montone, R. A., Di Vito, L., Gramegna, M., Refaat, H., Scalone, G., et al. (2015). Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. European Heart Journal, 36(22), 1377–1384. https://doi.org/10.1093/eurheartj/ehv029.

    Article  PubMed  Google Scholar 

  28. Yonetsu, T., Lee, T., Murai, T., Suzuki, M., Matsumura, A., Hashimoto, Y., et al. (2016). Plaque morphologies and the clinical prognosis of acute coronary syndrome caused by lesions with intact fibrous cap diagnosed by optical coherence tomography. International Journal of Cardiology, 203, 766–774. https://doi.org/10.1016/j.ijcard.2015.11.030.

    Article  PubMed  Google Scholar 

  29. Hu, S., Zhu, Y., Zhang, Y., Dai, J., Li, L., Dauerman, H., et al. (2017). Management and outcome of patients with acute coronary syndrome caused by plaque rupture versus plaque erosion: an intravascular optical coherence tomography study. Journal of the American Heart Association, 6(3). https://doi.org/10.1161/jaha.116.004730.

  30. Jia, H., Dai, J., Hou, J., Xing, L., Ma, L., Liu, H., et al. (2017). Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). European Heart Journal, 38(11), 792–800. https://doi.org/10.1093/eurheartj/ehw381.

    Article  CAS  PubMed  Google Scholar 

  31. Xing, L., Yamamoto, E., Sugiyama, T., Jia, H., Ma, L., Hu, S., et al. (2017). EROSION study (effective anti-thrombotic therapy without stenting: Intravascular optical coherence tomography-based management in plaque erosion): a 1-year follow-up report. Circulation. Cardiovascular interventions, 10(12), doi:https://doi.org/10.1161/circinterventions.117.005860.

Download references

Funding

This study was supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2016-I2M-1-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was conducted according to the Declaration of Helsinki. The ethical committee of the Fuwai Hospital approved the study. No animal studies were carried out by the authors for this article. Informed consent was obtained from all individual participants included in the study.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Yang, S., Chen, R. et al. High Plasma Myeloperoxidase Is Associated with Plaque Erosion in Patients with ST-Segment Elevation Myocardial Infarction. J. of Cardiovasc. Trans. Res. 13, 908–915 (2020). https://doi.org/10.1007/s12265-020-10002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10002-x

Keywords

Navigation