Skip to main content
Log in

Syncope in the Young Adult and in the Athlete: Causes and Clinical Work-up to Exclude a Life-Threatening Cardiac Disease

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Syncope is defined as a transient loss of consciousness due to cerebral hypoperfusion, characterized by a rapid onset, short duration, and spontaneous complete recovery. It is usually a benign event, but sometimes it may represent the initial presentation of several cardiac disorders associated with sudden cardiac death during physical activity. A careful evaluation is essential particularly in young adults and in competitive athletes in order to exclude the presence of an underlying life-threatening cardiovascular disease. The present review analyzes the main non-cardiac and cardiac causes of syncope and the contribution of the available tools for differential diagnosis. Clinical work-up of the athlete with syncope occurring in extreme environments and management in terms of sports eligibility and disqualification are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brignole, M., et al. (2018). 2018 ESC guidelines for the diagnosis and management of syncope. European Heart Journal, 39(21), 1883–1948.

    PubMed  Google Scholar 

  2. Corrado, D., et al. (2003). Does sports activity enhance the risk of sudden death in adolescents and young adults? Journal of the American College of Cardiology, 42(11), 1959–1963.

    PubMed  Google Scholar 

  3. Christou, G. A., Christou, K. A., & Kiortsis, D. N. (2018). Pathophysiology of noncardiac syncope in athletes. Sports Medicine, 48(7), 1561–1573.

    PubMed  Google Scholar 

  4. Colivicchi, F., Ammirati, F., & Santini, M. (2004). Epidemiology and prognostic implications of syncope in young competing athletes. European Heart Journal, 25(19), 1749–1753.

    PubMed  Google Scholar 

  5. Smith, J. J., Porth, C. M., & Erickson, M. (1994). Hemodynamic response to the upright posture. Journal of Clinical Pharmacology, 34(5), 375–386.

    CAS  PubMed  Google Scholar 

  6. Christou, G. A., et al. (2016). A novel strategy for evaluating tilt test in athletes with syncope. European Journal of Preventive Cardiology, 23(9), 1003–1010.

    PubMed  Google Scholar 

  7. Ogoh, S., et al. (2005). Dynamic cerebral autoregulation during exhaustive exercise in humans. American Journal of Physiology. Heart and Circulatory Physiology, 288(3), H1461–H1467.

    CAS  PubMed  Google Scholar 

  8. Willie, C. K., et al. (2013). Maintained cerebrovascular function during post-exercise hypotension. European Journal of Applied Physiology, 113(6), 1597–1604.

    CAS  PubMed  Google Scholar 

  9. Mundel, T., et al. (2015). Postexercise orthostatic intolerance: Influence of exercise intensity. Experimental Physiology, 100(8), 915–925.

    PubMed  Google Scholar 

  10. Gisolf, J., et al. (2004). Tidal volume, cardiac output and functional residual capacity determine end-tidal CO2 transient during standing up in humans. The Journal of Physiology, 554(Pt 2), 579–590.

    CAS  PubMed  Google Scholar 

  11. Olshansky, B. (1999). A Pepsi challenge. The New England Journal of Medicine, 340(25), 2006.

    CAS  PubMed  Google Scholar 

  12. Flugelman, M., Halon, D. A., & Goldblatt, H. (1987). Golf syncope. Lancet, 2(8549), 47.

    CAS  PubMed  Google Scholar 

  13. Krediet, C. T., et al. (2004). Exercise related syncope, when it's not the heart. Clinical Autonomic Research, 14(Suppl 1), 25–36.

    PubMed  Google Scholar 

  14. Corrado, D., et al. (2019). Arrhythmogenic right ventricular cardiomyopathy: Evaluation of the current diagnostic criteria and differential diagnosis. European Heart Journal. https://doi.org/10.1093/eurheartj/ehz669.

  15. Marcus, F. I., et al. (2010). Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed modification of the Task Force Criteria. European Heart Journal, 31(7), 806–814.

    PubMed  PubMed Central  Google Scholar 

  16. D'Ascenzi, F., et al. (2018). Diagnostic Differentiation Between Arrhythmogenic Cardiomyopathy and Athlete'sHeart by Using Imaging. JACC: Cardiovascular Imaging, 11(9), 1327–1339.

    PubMed  Google Scholar 

  17. Zorzi, A., et al. (2016). Arrhythmogenic right ventricular cardiomyopathy: Risk stratification and indications for defibrillator therapy. Current Cardiology Reports, 18(6), 57.

    PubMed  Google Scholar 

  18. Finocchiaro, G., et al. (2019). The electrocardiogram in the diagnosis and management of patients with hypertrophic cardiomyopathy. Heart Rhythm, 17(1), 142–151. https://doi.org/10.1016/j.hrthm.2019.07.019.

  19. Authors/Task Force, m, et al. (2014). 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart Journal, 35(39), 2733–2779.

    Google Scholar 

  20. di Gioia, C. R., et al. (2016). Nonischemic left ventricular scar and cardiac sudden death in the young. Human Pathology, 58, 78–89.

    PubMed  Google Scholar 

  21. Zorzi, A., et al. (2016). Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circulation. Arrhythmia and Electrophysiology, 9(7). https://doi.org/10.1161/CIRCEP.116.004229.

  22. Schnell, F., et al. (2016). Subepicardial delayed gadolinium enhancement in asymptomatic athletes: Let sleeping dogs lie? British Journal of Sports Medicine, 50(2), 111–117.

    PubMed  Google Scholar 

  23. Cipriani, A., et al. (2019). Predictive value of exercise testing in athletes with ventricular ectopy evaluated by cardiac magnetic resonance. Heart Rhythm, 16(2), 239–248.

    PubMed  Google Scholar 

  24. Corrado, D., et al. (2019). How to evaluate premature ventricular beats in the athlete: Critical review and proposal of a diagnostic algorithm. British Journal of Sports Medicine. https://doi.org/10.1136/bjsports-2018-100529.

  25. Schwartz, P. J., Crotti, L., & Insolia, R. (2012). Long-QT syndrome: From genetics to management. Circulation. Arrhythmia and Electrophysiology, 5(4), 868–877.

    PubMed  PubMed Central  Google Scholar 

  26. Priori, S. G., et al. (2016). 2015 ESC Guidelines for the Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Revista Española de Cardiología (English Ed), 69(2), 176.

    Google Scholar 

  27. Brugada, J., et al. (2018). Present status of Brugada syndrome: JACC state-of-the-art review. Journal of the American College of Cardiology, 72(9), 1046–1059.

    PubMed  Google Scholar 

  28. Pflaumer, A., & Davis, A. M. (2019). An update on the diagnosis and management of catecholaminergic polymorphic ventricular tachycardia. Heart, Lung & Circulation, 28(3), 366–369.

    Google Scholar 

  29. Grani, C., et al. (2017). Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery disease. Journal of Nuclear Cardiology, 24(1), 226–234.

    PubMed  Google Scholar 

  30. Basso, C., et al. (2000). Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. Journal of the American College of Cardiology, 35(6), 1493–1501.

    CAS  PubMed  Google Scholar 

  31. Pelliccia, A., et al. (1990). Coronary arteries in physiological hypertrophy: Echocardiographic evidence of increased proximal size in elite athletes. International Journal of Sports Medicine, 11(2), 120–126.

    CAS  PubMed  Google Scholar 

  32. Zeppilli, P., et al. (1987). Echocardiographic visualization of the coronary arteries in endurance athletes. Giornale Italiano di Cardiologia, 17(11), 957–965.

    CAS  PubMed  Google Scholar 

  33. Vettor, G., et al. (2015). Syncope as a warning symptom of sudden cardiac death in athletes. Cardiology Clinics, 33(3), 423–432.

    PubMed  Google Scholar 

  34. Zorzi, A., Cipriani, A., & Corrado, D. (2018). Circumstances of cardiac arrest during sports activity recorded on video. European Journal of Preventive Cardiology, 25(13), 1452–1454.

    PubMed  Google Scholar 

  35. Litovsky, S. H., & Antzelevitch, C. (1990). Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circulation Research, 67(3), 615–627.

    CAS  PubMed  Google Scholar 

  36. Corrado, D., et al. (2006). Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA, 296(13), 1593–1601.

    CAS  PubMed  Google Scholar 

  37. Sharma, S., et al. (2018). International recommendations for electrocardiographic interpretation in athletes. European Heart Journal, 39(16), 1466–1480.

    PubMed  Google Scholar 

  38. Maron, B. J., et al. (2009). Sudden deaths in young competitive athletes: Analysis of 1866 deaths in the United States, 1980-2006. Circulation, 119(8), 1085–1092.

    PubMed  Google Scholar 

  39. D'Ascenzi, F., et al. (2015). Exercise-induced left-ventricular hypertrabeculation in athlete's heart. International Journal of Cardiology, 181, 320–322.

    PubMed  Google Scholar 

  40. Pelliccia, A., et al. (2018). European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: Recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete's heart. European Heart Journal, 39(21), 1949–1969.

    PubMed  Google Scholar 

  41. Palmieri, V., et al. (2018). Anomalous origin of coronary arteries from the "wrong" sinus in athletes: Diagnosis and management strategies. International Journal of Cardiology, 252, 13–20.

    PubMed  Google Scholar 

  42. Pelliccia, A., Spataro, A., & Maron, B. J. (1993). Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. The American Journal of Cardiology, 72(12), 978–979.

    CAS  PubMed  Google Scholar 

  43. Shen, W. K., et al. (2017). 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Journal of the American College of Cardiology, 70(5), 620–663.

    PubMed  Google Scholar 

  44. Zipes, D. P., et al. (2005). Task Force 7: Arrhythmias. Journal of the American College of Cardiology, 45(8), 1354–1363.

    PubMed  Google Scholar 

  45. Sirico, F., et al. (2019). Exercise stress test in apparently healthy individuals - where to place the finish line? The Ferrari corporate wellness programme experience. European Journal of Preventive Cardiology, 26(7), 731–738.

    PubMed  Google Scholar 

  46. D'Ascenzi, F., et al. (2017). The prevalence and clinical significance of premature ventricular beats in the athlete. Scandinavian Journal of Medicine & Science in Sports, 27(2), 140–151.

    CAS  Google Scholar 

  47. van Dijk, N., et al. (2008). High diagnostic yield and accuracy of history, physical examination, and ECG in patients with transient loss of consciousness in FAST: The fainting assessment study. Journal of Cardiovascular Electrophysiology, 19(1), 48–55.

    PubMed  Google Scholar 

  48. Brignole, M., et al. (2006). A new management of syncope: Prospective systematic guideline-based evaluation of patients referred urgently to general hospitals. European Heart Journal, 27(1), 76–82.

    PubMed  Google Scholar 

  49. Sivakumaran, S., et al. (2003). A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. The American Journal of Medicine, 115(1), 1–5.

    PubMed  Google Scholar 

  50. Ruwald, M. H., & Zareba, W. (2013). ECG monitoring in syncope. Progress in Cardiovascular Diseases, 56(2), 203–210.

    PubMed  Google Scholar 

  51. Brignole, M., et al. (2006). Lack of correlation between the responses to tilt testing and adenosine triphosphate test and the mechanism of spontaneous neurally mediated syncope. European Heart Journal, 27(18), 2232–2239.

    PubMed  Google Scholar 

  52. Deharo, J. C., et al. (2006). An implantable loop recorder study of highly symptomatic vasovagal patients: The heart rhythm observed during a spontaneous syncope is identical to the recurrent syncope but not correlated with the head-up tilt test or adenosine triphosphate test. Journal of the American College of Cardiology, 47(3), 587–593.

    PubMed  Google Scholar 

  53. Maines, M., et al. (2018). Clinical impact, safety, and accuracy of the remotely monitored implantable loop recorder Medtronic reveal LINQTM. Europace, 20(6), 1050–1057.

    PubMed  Google Scholar 

  54. Stein, K. M., et al. (2001). Formal analysis of the optimal duration of tilt testing for the diagnosis of neurally mediated syncope. American Heart Journal, 141(2), 282–288.

    CAS  PubMed  Google Scholar 

  55. Kapoor, W. N., Smith, M. A., & Miller, N. L. (1994). Upright tilt testing in evaluating syncope: A comprehensive literature review. The American Journal of Medicine, 97(1), 78–88.

    CAS  PubMed  Google Scholar 

  56. Hastings, J. L., & Levine, B. D. (2012). Syncope in the athletic patient. Progress in Cardiovascular Diseases, 54(5), 438–444.

    PubMed  Google Scholar 

  57. Gati, S., Sharma, S., & Pennell, D. (2018). The role of cardiovascular magnetic resonance imaging in the assessment of highly trained athletes. JACC: Cardiovascular Imaging, 11(2 Pt 1), 247–259.

    PubMed  Google Scholar 

  58. Nucifora, G., et al. (2014). Prevalence and prognostic value of concealed structural abnormalities in patients with apparently idiopathic ventricular arrhythmias of left versus right ventricular origin: A magnetic resonance imaging study. Circulation. Arrhythmia and Electrophysiology, 7(3), 456–462.

    PubMed  Google Scholar 

  59. Andreini, D., et al. (2019). CMR for identifying the substrate of ventricular arrhythmia in patients with Normal echocardiography. JACC: Cardiovascular Imaging, 13(2 Pt 1), 410–421.

  60. Pilichou, K., et al. (2016). Arrhythmogenic cardiomyopathy. Orphanet Journal of Rare Diseases, 11, 33.

    PubMed  PubMed Central  Google Scholar 

  61. Habib, M., Hoss, S., & Rakowski, H. (2019). Evaluation of hypertrophic cardiomyopathy: Newer Echo and MRI approaches. Current Cardiology Reports, 21(8), 75.

    PubMed  Google Scholar 

  62. Fattori, R., et al. (2010). Significance of magnetic resonance imaging in apical hypertrophic cardiomyopathy. The American Journal of Cardiology, 105(11), 1592–1596.

    PubMed  Google Scholar 

  63. Task Force, M., et al. (2013). 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European Heart Journal, 34(38), 2949–3003.

    Google Scholar 

  64. Berrettini, U., Trivelloni, P., & Patteri, G. (2010). Syncope in the hyperbaric environment. Giornale Italiano di Cardiologia (Rome), 11(10 Suppl 1), 122S–125S.

    Google Scholar 

  65. Craig Jr., A. B. (1961). Causes of loss of consciousness during underwater swimming. Journal of Applied Physiology, 16, 583–586.

    PubMed  Google Scholar 

  66. Hong, S. K., et al. (1963). Diving pattern, lung volumes, and alveolar gas of the Korean diving woman (ama). Journal of Applied Physiology (Bethesda, MD: 1985), 18(3), 457–465.

    CAS  Google Scholar 

  67. Joulia, F., et al. (2013). Plasma adenosine release is associated with bradycardia and transient loss of consciousness during experimental breath-hold diving. International Journal of Cardiology, 168(5), e138–e141.

    PubMed  Google Scholar 

  68. Berrettini, U., Landolfi, A., & Patteri, G. (2008). The heart in extreme sports: hyperbaric activity and microgravity. Giornale Italiano di Cardiologia (Rome), 9(10 Suppl 1), 94S–98S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio D’Ascenzi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Associate Editor Domingo A. Pascual-Figal oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ascenzi, F., Zorzi, A., Sciaccaluga, C. et al. Syncope in the Young Adult and in the Athlete: Causes and Clinical Work-up to Exclude a Life-Threatening Cardiac Disease. J. of Cardiovasc. Trans. Res. 13, 322–330 (2020). https://doi.org/10.1007/s12265-020-09989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09989-0

Keywords

Navigation