Abstract
The pathobiology of atherosclerosis and its current and potential future treatments are summarized, with a spotlight on three central cell types involved: (i) endothelial cells (ECs), (ii) macrophages, and (iii) vascular smooth muscle cells (VSMCs). (i) EC behaviour is regulated by the central transcription factors YAP/TAZ in reaction to biomechanical forces, such as hemodynamic shear stress. (ii) VSMC transdifferentiation (phenotype switching) to a macrophage-like phenotype contributes to the majority of cells positive for common cell surface macrophage markers in atherosclerotic plaques. (iii) Intra-plaque macrophages originate in a significant number from vascular resident macrophages. They can be activated via pattern recognition receptors on cell membrane (e.g. toll-like receptors) and inside cells (e.g. inflammasomes), requiring priming by neutrophil extracellular traps (NETs). ECs and macrophages can also be characterized by single-cell RNA sequencing. Adaptive immunity plays an important role in the inflammatory process. Future therapeutic options include vaccination, TRAF-STOPs, senolysis, or CD47 blockade.
Similar content being viewed by others
References
Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., et al. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the global burden of disease study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1.
Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., et al. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25. https://doi.org/10.1016/j.jacc.2017.04.052.
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., et al. (2019). Atherosclerosis. Nature Reviews Disease Primers, 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z.
DuFort, C. C., Paszek, M. J., & Weaver, V. M. (2011). Balancing forces: architectural control of mechanotransduction. [review article]. Nature Reviews Molecular Cell Biology, 12, 308. https://doi.org/10.1038/nrm3112.
Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., & Shah, V. H. (2018). Mechanosensing and fibrosis. [review]. Journal of Clinical Investigation, 128(1), 74–84. https://doi.org/10.1172/jci93561.
Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., et al. (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. [article]. Nature Cell Biology, 18, 540. https://doi.org/10.1038/ncb3336.
Brown, A. J., Teng, Z., Evans, P. C., Gillard, J. H., Samady, H., & Bennett, M. R. (2016). Role of biomechanical forces in the natural history of coronary atherosclerosis. [review article]. Nature Reviews Cardiology, 13, 210. https://doi.org/10.1038/nrcardio.2015.203.
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428. https://doi.org/10.1126/science.276.5317.1425.
Kwak, B. R., Krams, R., Lehoux, S., Monaco, C., Weber, C., Steffens, S., et al. (2014). Biomechanical factors in atherosclerosis: mechanisms and clinical implications†. European Heart Journal, 35(43), 3013–3020. https://doi.org/10.1093/eurheartj/ehu353.
Baratchi, S., Khoshmanesh, K., Woodman, O. L., Potocnik, S., Peter, K., & McIntyre, P. (2017). Molecular sensors of blood flow in endothelial cells. Trends in Molecular Medicine, 23(9), 850–868. https://doi.org/10.1016/j.molmed.2017.07.007.
Katsumi, A., Orr, A. W., Tzima, E., & Schwartz, M. A. (2004). Integrins in mechanotransduction. [review]. Journal of Biological Chemistry, 279(13), 12001–12004. https://doi.org/10.1074/jbc.R300038200.
Tarbell, J. M., Simon, S. I., & Curry, F.-R. E. (2014). Mechanosensing at the vascular interface. Annual Review of Biomedical Engineering, 16(1), 505–532. https://doi.org/10.1146/annurev-bioeng-071813-104908.
Mack, J. J., Mosqueiro, T. S., Archer, B. J., Jones, W. M., Sunshine, H., Faas, G. C., et al. (2017). NOTCH1 is a mechanosensor in adult arteries. Nature Communications, 8(1), 1620. https://doi.org/10.1038/s41467-017-01741-8.
Rangel, L., Bernabé-Rubio, M., Fernández-Barrera, J., Casares-Arias, J., Millán, J., Alonso, M. A., et al. (2019). Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Scientific Reports, 9(1), 1116. https://doi.org/10.1038/s41598-018-38020-5.
Li, J., Hou, B., Tumova, S., Muraki, K., Bruns, A., Ludlow, M. J., et al. (2014). Piezo1 integration of vascular architecture with physiological force. Nature, 515, 279. https://doi.org/10.1038/nature13701.
Zhao, Q., Zhou, H., Chi, S., Wang, Y., Wang, J., Geng, J., et al. (2018). Structure and mechanogating mechanism of the Piezo1 channel. [article]. Nature, 554, 487. https://doi.org/10.1038/nature25743.
Rausch, V., Bostrom, J. R., Park, J., Bravo, I. R., Feng, Y., Hay, D. C., et al. (2019). The hippo pathway regulates caveolae expression and mediates flow response via caveolae. Current Biology, 29(2), 242-255.e246. https://doi.org/10.1016/j.cub.2018.11.066.
Niu, N., Xu, S., Xu, Y., Little, P. J., & Jin, Z.-G. (2019). Targeting mechanosensitive transcription factors in atherosclerosis. Trends in Pharmacological Sciences, 40(4), 253–266. https://doi.org/10.1016/j.tips.2019.02.004.
SenBanerjee, S., Lin, Z., Atkins, G. B., Greif, D. M., Rao, R. M., Kumar, A., et al. (2004). KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. The Journal of Experimental Medicine, 199(10), 1305–1315. https://doi.org/10.1084/jem.20031132.
Augustin, H. G., & Koh, G. Y. (2017). Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science, 357(6353). https://doi.org/10.1126/science.aal2379.
Martin, F. A., Murphy, R. P., & Cummins, P. M. (2013). Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. American Journal of Physiology-Heart and Circulatory Physiology, 304(12), H1585–H1597. https://doi.org/10.1152/ajpheart.00096.2013.
Doddaballapur, A., Michalik Katharina, M., Manavski, Y., Lucas, T., Houtkooper Riekelt, H., You, X., et al. (2015). Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), 137–145. https://doi.org/10.1161/ATVBAHA.114.304277.
Eelen, G., Zeeuw, P. d., Treps, L., Harjes, U., Wong, B. W., & Carmeliet, P. (2018). Endothelial cell metabolism. Physiological Reviews, 98(1), 3–58. https://doi.org/10.1152/physrev.00001.2017.
Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. [article]. Nature Cell Biology, 14, 249.
Totaro, A., Panciera, T., & Piccolo, S. (2018). YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 20(8), 888–899. https://doi.org/10.1038/s41556-018-0142-z.
Li, B., He, J., Lv, H., Liu, Y., Lv, X., Zhang, C., et al. (2019). c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. The Journal of Clinical Investigation, 129(3), 1167–1179. https://doi.org/10.1172/JCI122440.
Wang, K.-C., Yeh, Y.-T., Nguyen, P., Limqueco, E., Lopez, J., Thorossian, S., et al. (2016). Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proceedings of the National Academy of Sciences, 113(41), 11525–11530. https://doi.org/10.1073/pnas.1613121113.
Yu, F.-X., Zhao, B., & Guan, K.-L. (2015). Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4), 811–828. https://doi.org/10.1016/j.cell.2015.10.044.
Panciera, T., Azzolin, L., Cordenonsi, M., & Piccolo, S. (2017). Mechanobiology of YAP and TAZ in physiology and disease. [review article]. Nature Reviews Molecular Cell Biology, 18, 758. https://doi.org/10.1038/nrm.2017.87.
Rausch, V., & Hansen, C. G. (2020). The hippo pathway, YAP/TAZ, and the plasma membrane. [review]. Trends in Cell Biology, 30(1), 32–48. https://doi.org/10.1016/j.tcb.2019.10.005.
Wang, L., Luo, J.-Y., Li, B., Tian, X. Y., Chen, L.-J., Huang, Y., et al. (2016). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature, 540, 579. https://doi.org/10.1038/nature20602.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. [article]. Nature, 474, 179. https://doi.org/10.1038/nature10137.
Halder, G., Dupont, S., & Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. [perspective]. Nature Reviews Molecular Cell Biology, 13, 591. https://doi.org/10.1038/nrm3416.
Brusatin, G., Panciera, T., Gandin, A., Citron, A., & Piccolo, S. (2018). Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nature Materials, 17(12), 1063–1075. https://doi.org/10.1038/s41563-018-0180-8.
Hikita, T., Mirzapourshafiyi, F., Barbacena, P., Riddell, M., Pasha, A., Li, M., et al. (2018). PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO reports, 19(9), e45253. https://doi.org/10.15252/embr.201745253.
Briot, A., Civelek, M., Seki, A., Hoi, K., Mack, J. J., Lee, S. D., et al. (2015). Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. The Journal of Experimental Medicine, 212(12), 2147–2163. https://doi.org/10.1084/jem.20150603.
Chen, P.-Y., Qin, L., Baeyens, N., Li, G., Afolabi, T., Budatha, M., et al. (2015). Endothelial-to-mesenchymal transition drives atherosclerosis progression. The Journal of Clinical Investigation, 125(12), 4514–4528. https://doi.org/10.1172/JCI82719.
Li, Y., Lui, K. O., & Zhou, B. (2018). Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nature Reviews Cardiology, 15(8), 445–456. https://doi.org/10.1038/s41569-018-0023-y.
Kovacic, J. C., Dimmeler, S., Harvey, R. P., Finkel, T., Aikawa, E., Krenning, G., et al. (2019). Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 73(2), 190–209. https://doi.org/10.1016/j.jacc.2018.09.089.
Helmke, A., Casper, J., Nordlohne, J., David, S., Haller, H., Zeisberg, E. M., et al. (2019). Endothelial-to-mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. [article]. FASEB Journal, 33(2), 2278–2289. https://doi.org/10.1096/fj.201801238R.
Kalluri Aditya, S., Vellarikkal Shamsudheen, K., Edelman Elazer, R., Nguyen, L., Subramanian, A., Ellinor Patrick, T., et al. (2019). Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation, 140(2), 147–163. https://doi.org/10.1161/CIRCULATIONAHA.118.038362.
Lee, Y. S., Wollam, J., & Olefsky, J. M. (2018). An integrated view of immunometabolism. Cell, 172(1), 22–40. https://doi.org/10.1016/j.cell.2017.12.025.
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.-A., Mardani, F., et al. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429.
Krenkel, O., & Tacke, F. (2017). Liver macrophages in tissue homeostasis and disease. [review]. Nature Reviews Immunology, 17(5), 306–321. https://doi.org/10.1038/nri.2017.11.
Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. [review article]. Nature Reviews Immunology, 13, 709. https://doi.org/10.1038/nri3520.
Genin, M., Clement, F., Fattaccioli, A., Raes, M., & Michiels, C. (2015). M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. Bmc Cancer, 15. https://doi.org/10.1186/s12885-015-1546-9.
Murray, P. J. (2017). Macrophage polarization. In D. Julius (Ed.), Annual Review of Physiology, Vol 79 (Vol. 79, pp. 541–566, annual review of physiology). Palo Alto: Annual reviews.
Lawrence, T., & Natoli, G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. [review article]. Nature Reviews Immunology, 11, 750. https://doi.org/10.1038/nri3088.
Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2014). Macrophage subsets in atherosclerosis. [review article]. Nature Reviews Cardiology, 12, 10. https://doi.org/10.1038/nrcardio.2014.173.
Hoeksema, M. A., & Glass, C. K. (2019). Nature and nurture of tissue-specific macrophage phenotypes. [review]. Atherosclerosis, 281, 159–167. https://doi.org/10.1016/j.atherosclerosis.2018.10.005.
Li, C., Xu, M. M., Wang, K., Adler, A. J., Vella, A. T., & Zhou, B. (2018). Macrophage polarization and meta-inflammation. Translational Research, 191, 29–44. https://doi.org/10.1016/j.trsl.2017.10.004.
Cochain, C., Vafadarnejad, E., Arampatzi, P., Pelisek, J., Winkels, H., Ley, K., et al. (2018). Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circulation Research, 122(12), 1661–1674. https://doi.org/10.1161/Circresaha.117.312509.
Ginhoux, F., & Guilliams, M. (2016). Tissue-resident macrophage ontogeny and homeostasis. Immunity, 44(3), 439–449. https://doi.org/10.1016/j.immuni.2016.02.024.
Schulz, C., Perdiguero, E. G., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., et al. (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336(6077), 86–90. https://doi.org/10.1126/science.1219179.
Perdiguero, E. G., & Geissmann, F. (2016). The development and maintenance of resident macrophages. Nature Immunology, 17(1), 2–8. https://doi.org/10.1038/ni.3341.
Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., et al. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. [article]. Science, 363(6432), 1190−+. https://doi.org/10.1126/science.aau0964.
Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., et al. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell, 159(6), 1312–1326. https://doi.org/10.1016/j.cell.2014.11.018.
Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y., Figueiredo, J.-L., et al. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 19, 1166. https://doi.org/10.1038/nm.3258.
Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341–355. https://doi.org/10.1016/j.cell.2011.04.005.
Binder, C. J., Papac-Milicevic, N., & Witztum, J. L. (2016). Innate sensing of oxidation-specific epitopes in health and disease. [review article]. Nature Reviews Immunology, 16, 485. https://doi.org/10.1038/nri.2016.63.
Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunological Reviews, 249(1), 158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x.
Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. [review article]. Nature Reviews Immunology, 4, 499. https://doi.org/10.1038/nri1391.
Martinon, F., Mayor, A., & Tschopp, J. (2009). The inflammasomes: guardians of the body. Annual Review of Immunology, 27(1), 229–265. https://doi.org/10.1146/annurev.immunol.021908.132715.
Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464, 1357. https://doi.org/10.1038/nature08938.
Hayashi, C., Papadopoulos, G., Gudino, C. V., Weinberg, E. O., Barth, K. R., Madrigal, A. G., et al. (2012). Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. The Journal of Immunology, 189(7), 3681. https://doi.org/10.4049/jimmunol.1201541.
Lundberg, A. M., Ketelhuth, D. F. J., Johansson, M. E., Gerdes, N., Liu, S., Yamamoto, M., et al. (2013). Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovascular Research, 99(2), 364–373. https://doi.org/10.1093/cvr/cvt033.
Koulis, C., Chen, Y.-C., Hausding, C., Ahrens, I., Kyaw Tin, S., Tay, C., et al. (2014). Protective role for toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E–deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 516–525. https://doi.org/10.1161/ATVBAHA.113.302407.
Liu, C.-L., Santos, M. M., Fernandes, C., Liao, M., Iamarene, K., Zhang, J.-Y., et al. (2017). Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Scientific Reports, 7(1), 847. https://doi.org/10.1038/s41598-017-00977-0.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. https://doi.org/10.1126/science.1092385.
Thalin, C., Hisada, Y., Lundstrom, S., Mackman, N., & Wallen, H. (2019). Neutrophil extracellular traps villains and targets in arterial, venous, and cancer-associated thrombosis. [review]. Arteriosclerosis Thrombosis and Vascular Biology, 39(9), 1724–1738. https://doi.org/10.1161/atvbaha.119.312463.
Papayannopoulos, V. (2017). Neutrophil extracellular traps in immunity and disease. [review article]. Nature Reviews Immunology, 18, 134. https://doi.org/10.1038/nri.2017.105.
Xu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., et al. (2009). Extracellular histones are major mediators of death in sepsis. Nature Medicine, 15(11), 1318–1321. https://doi.org/10.1038/nm.2053.
Gupta, A. K., Joshi, M. B., Philippova, M., Erne, P., Hasler, P., Hahn, S., et al. (2010). Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Letters, 584(14), 3193–3197. https://doi.org/10.1016/j.febslet.2010.06.006.
Etulain, J., Martinod, K., Wong, S. L., Cifuni, S. M., Schattner, M., & Wagner, D. D. (2015). P-selectin promotes neutrophil extracellular trap formation in mice. Blood, 126(2), 242–246. https://doi.org/10.1182/blood-2015-01-624023.
Martinon, F., Burns, K., & Tschopp, J. (2002). The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular Cell, 10(2), 417–426. https://doi.org/10.1016/S1097-2765(02)00599-3.
Warnatsch, A., Ioannou, M., Wang, Q., & Papayannopoulos, V. (2015). Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 349(6245), 316–320. https://doi.org/10.1126/science.aaa8064.
Nguyen, M.-A., Karunakaran, D., Geoffrion, M., Cheng Henry, S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 49–63. https://doi.org/10.1161/ATVBAHA.117.309795.
Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 16(12), 727–744. https://doi.org/10.1038/s41569-019-0227-9.
Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis Thrombosis and Vascular Biology, 27(6), 1248–1258. https://doi.org/10.1161/atvbaha.107.141069.
Bentzon, J. F., & Majesky, M. W. (2018). Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. [review]. Cardiovascular Research, 114(4), 492–500. https://doi.org/10.1093/cvr/cvx251.
Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118(4), 692–702. https://doi.org/10.1161/circresaha.115.306361.
Shankman, L. S., Gomez, D., Cherepanova, O. A., Salmon, M., Alencar, G. F., Haskins, R. M., et al. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 21(6), 628–637. https://doi.org/10.1038/nm.3866.
Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. [article]. Nature, 460, 705. https://doi.org/10.1038/nature08195.
Xia, X.-D., Zhou, Z., Yu, X.-h., Zheng, X.-L., & Tang, C.-K. (2017). Myocardin: a novel player in atherosclerosis. Atherosclerosis, 257, 266–278. https://doi.org/10.1016/j.atherosclerosis.2016.12.002.
Rong, J. X., Shapiro, M., Trogan, E., & Fisher, E. A. (2003). Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proceedings of the National Academy of Sciences, 100(23), 13531–13536. https://doi.org/10.1073/pnas.1735526100.
Pidkovka Nataliya, A., Cherepanova Olga, A., Yoshida, T., Alexander Matthew, R., Deaton Rebecca, A., Thomas James, A., et al. (2007). Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circulation Research, 101(8), 792–801. https://doi.org/10.1161/CIRCRESAHA.107.152736.
Dandré, F., & Owens, G. K. (2004). Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. American Journal of Physiology-Heart and Circulatory Physiology, 286(6), H2042–H2051. https://doi.org/10.1152/ajpheart.00625.2003.
Clément, N., Gueguen, M., Glorian, M., Blaise, R., Andréani, M., Brou, C., et al. (2007). Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. Journal of Cell Science, 120(19), 3352–3361. https://doi.org/10.1242/jcs.007872.
Caplice, N. M., Bunch, T. J., Stalboerger, P. G., Wang, S., Simper, D., Miller, D. V., et al. (2003). Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proceedings of the National Academy of Sciences, 100(8), 4754–4759. https://doi.org/10.1073/pnas.0730743100.
Iwata, H., Manabe, I., Fujiu, K., Yamamoto, T., Takeda, N., Eguchi, K., et al. (2010). Bone marrow–derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation, 122(20), 2048–2057. https://doi.org/10.1161/CIRCULATIONAHA.110.965202.
Silvestre-Roig, C., Braster, Q., Wichapong, K., Lee, E. Y., Teulon, J. M., Berrebeh, N., et al. (2019). Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 569(7755), 236–240. https://doi.org/10.1038/s41586-019-1167-6.
Gistera, A., & Hansson, G. K. (2017). The immunology of atherosclerosis. Nature Reviews Nephrology, 13(6). https://doi.org/10.1038/nrneph.2017.51.
Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12(3), 204–212.
Abdolmaleki, F., Gheibi Hayat, S. M., Bianconi, V., Johnston, T. P., & Sahebkar, A. (2019). Atherosclerosis and immunity: a perspective. Trends in Cardiovascular Medicine, 29(6), 363–371. https://doi.org/10.1016/j.tcm.2018.09.017.
Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., et al. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. The Journal of Experimental Medicine, 204(1), 57–63. https://doi.org/10.1084/jem.20061852.
Libby, P., Nahrendorf, M., & Swirski, F. K. (2016). Leukocytes link local and systemic inflammation in ischemic cardiovascular disease an expanded “cardiovascular continuum”. Journal of the American College of Cardiology, 67(9), 1091–1103.
Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. [review]. Lancet, 388(10059), 2532–2561. https://doi.org/10.1016/s0140-6736(16)31357-5.
Ward Natalie, C., Watts Gerald, F., & Eckel Robert, H. (2019). Statin toxicity. Circulation Research, 124(2), 328–350. https://doi.org/10.1161/CIRCRESAHA.118.312782.
Oesterle, A., Laufs, U., & Liao, J. K. (2017). Pleiotropic effects of statins on the cardiovascular system. [review]. Circulation Research, 120(1), 229–243. https://doi.org/10.1161/circresaha.116.308537.
Tousoulis, D., Psarros, C., Demosthenous, M., Patel, R., Antoniades, C., & Stefanadis, C. (2014). Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. Journal of the American College of Cardiology, 63(23), 2491–2502. https://doi.org/10.1016/j.jacc.2014.01.054.
Davignon, J. (2004). Beneficial cardiovascular pleiotropic effects of statins. [article]. Circulation, 109(23), 39–43. https://doi.org/10.1161/01.CIR.0000131517.20177.5a.
Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G. B., Das, H., et al. (2005). Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 112(5), 720–726. https://doi.org/10.1161/CIRCULATIONAHA.104.525774.
Laufs, U., La Fata, V., Plutzky, J., & Liao James, K. (1998). Upregulation of endothelial nitric oxide synthase by HMG CoA Reductase inhibitors. Circulation, 97(12), 1129–1135. https://doi.org/10.1161/01.CIR.97.12.1129.
Mulhaupt, F., Matter, C. M., Kwak, B. R., Pelli, G., Veillard, N. R., Burger, F., et al. (2003). Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells. Cardiovascular Research, 59(3), 755–766. https://doi.org/10.1016/S0008-6363(03)00515-7.
De Caterina, R., Libby, P., Peng, H. B., Thannickal, V. J., Rajavashisth, T. B., Gimbrone Jr., M. A., et al. (1995). Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. The Journal of Clinical Investigation, 96(1), 60–68. https://doi.org/10.1172/JCI118074.
Wassmann, S., Laufs, U., Bäumer, A. T., Müller, K., Ahlbory, K., Linz, W., et al. (2001). HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension, 37(6), 1450–1457. https://doi.org/10.1161/01.HYP.37.6.1450.
Bahrami, A., Parsamanesh, N., Atkin, S. L., Banach, M., & Sahebkar, A. (2018). Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacological Research, 135, 230–238. https://doi.org/10.1016/j.phrs.2018.08.014.
Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. [article]. Nature Cell Biology, 16, 357. https://doi.org/10.1038/ncb2936.
Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51(3), 246–252.
Weitz-Schmidt, G., Welzenbach, K., Brinkmann, V., Kamata, T., Kallen, J., Bruns, C., et al. (2001). Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Medicine, 7(6), 687–692. https://doi.org/10.1038/89058.
Leisegang, M. S., Bibli, S. I., Guenther, S., Pfluger-Muller, B., Oo, J. A., Hoper, C., et al. (2019). Pleiotropic effects of laminar flow and statins depend on the Kruppel-like factor-induced lncRNA MANTIS. [article]. European Heart Journal, 40(30), 2523–2533. https://doi.org/10.1093/eurheartj/ehz393.
Li, M., Liu, Y., Dutt, P., Fanburg, B. L., & Toksoz, D. (2007). Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293(2), L463–L471. https://doi.org/10.1152/ajplung.00133.2007.
Luan, Z., Chase Alex, J., & Newby Andrew, C. (2003). Statins inhibit secretion of metalloproteinases-1, −2, −3, and −9 from vascular smooth muscle cells and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(5), 769–775. https://doi.org/10.1161/01.ATV.0000068646.76823.AE.
Rezaie-Majd, A., Maca, T., Bucek Robert, A., Valent, P., Müller Michael, R., Husslein, P., et al. (2002). Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(7), 1194–1199. https://doi.org/10.1161/01.ATV.0000022694.16328.CC.
Ridker, P. M., Danielson, E., Fonseca, F. A. H., Genest, J., Gotto, A. M., Kastelein, J. J. P., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359(21), 2195–2207. https://doi.org/10.1056/NEJMoa0807646.
Milajerdi, A., Larijani, B., & Esmaillzadeh, A. (2019). Statins influence biomarkers of low grade inflammation in apparently healthy people or patients with chronic diseases: a systematic review and meta-analysis of randomized clinical trials. [Review]. Cytokine, 123, 13. https://doi.org/10.1016/j.cyto.2019.154752.
Dichtl, W., Dulak, J., Frick, M., Alber Hannes, F., Schwarzacher Severin, P., Ares Mikko, P. S., et al. (2003). HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(1), 58–63. https://doi.org/10.1161/01.ATV.0000043456.48735.20.
Ghittoni, R., Napolitani, G., Benati, D., Uliveri, C., Patrussi, L., Laghi Pasini, F., et al. (2006). Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. European Journal of Immunology, 36(11), 2885–2893. https://doi.org/10.1002/eji.200636567.
Cannon, C. P., Blazing, M. A., Giugliano, R. P., McCagg, A., White, J. A., Theroux, P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. New England Journal of Medicine, 372(25), 2387–2397. https://doi.org/10.1056/NEJMoa1410489.
Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. New England Journal of Medicine, 376(18), 1713–1722. https://doi.org/10.1056/NEJMoa1615664.
Nicholls, S. J., Puri, R., Anderson, T., Ballantyne, C. M., Cho, L., Kastelein, J. J. P., et al. (2016). Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA, 316(22), 2373–2384. https://doi.org/10.1001/jama.2016.16951.
Nicholls, S. J., Puri, R., Anderson, T., Ballantyne, C. M., Cho, L., Kastelein, J. J. P., et al. (2018). Effect of Evolocumab on coronary plaque composition. Journal of the American College of Cardiology, 72(17), 2012–2021. https://doi.org/10.1016/j.jacc.2018.06.078.
Hegele, R. A., & Tsimikas, S. (2019). Lipid-lowering agents targets beyond PCSK9. Circulation Research, 124(3), 386–404. https://doi.org/10.1161/circresaha.118.313171.
Byrne, R. A., Stone, G. W., Ormiston, J., & Kastrati, A. (2017). Coronary balloon angioplasty, stents, and scaffolds. The Lancet, 390(10096), 781–792. https://doi.org/10.1016/S0140-6736(17)31927-X.
Bhatt, D. L., Steg, P. G., Miller, M., Brinton, E. A., Jacobson, T. A., Ketchum, S. B., et al. (2018). Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New England Journal of Medicine, 380(1), 11–22. https://doi.org/10.1056/NEJMoa1812792.
Nordestgaard, B. G., Nicholls, S. J., Langsted, A., Ray, K. K., & Tybjoerg-Hansen, A. (2018). Advances in lipid-lowering therapy through gene-silencing technologies. [review]. Nature Reviews Cardiology, 15(5), 261–272. https://doi.org/10.1038/nrcardio.2018.3.
Ray, K. K., Landmesser, U., Leiter, L. A., Kallend, D., Dufour, R., Karakas, M., et al. (2017). Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. New England Journal of Medicine, 376(15), 1430–1440. https://doi.org/10.1056/NEJMoa1615758.
Graham, M. J., Lee, R. G., Brandt, T. A., Tai, L. J., Fu, W. X., Peralta, R., et al. (2017). Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. New England Journal of Medicine, 377(3), 222–232. https://doi.org/10.1056/NEJMoa1701329.
Viney, N. J., van Capelleveen, J. C., Geary, R. S., Xia, S. T., Tami, J. A., Yu, R. Z., et al. (2016). Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. [article]. Lancet, 388(10057), 2239–2253. https://doi.org/10.1016/s0140-6736(16)31009-1.
Collaborative, H. T. R. (2017). Effects of anacetrapib in patients with atherosclerotic vascular disease. [article]. New England Journal of Medicine, 377(13), 1217–1227. https://doi.org/10.1056/NEJMoa1706444.
Bäck, M., & Hansson, G. K. (2015). Anti-inflammatory therapies for atherosclerosis. [review article]. Nature Reviews Cardiology, 12, 199. https://doi.org/10.1038/nrcardio.2015.5.
Ridker, P. M., Everett, B. M., Pradhan, A., MacFadyen, J. G., Solomon, D. H., Zaharris, E., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. New England Journal of Medicine, 380(8), 752–762. https://doi.org/10.1056/NEJMoa1809798.
Hemkens, L. G., Ewald, H., Gloy, V. L., Arpagaus, A., Olu, K. K., Nidorf, M., et al. (2016). Colchicine for prevention of cardiovascular events. Cochrane Database of Systematic Reviews, 1. https://doi.org/10.1002/14651858.CD011047.pub2.
Martínez, G. J., Celermajer, D. S., & Patel, S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 269, 262–271. https://doi.org/10.1016/j.atherosclerosis.2017.12.027.
Okafor, O. N., Farrington, K., & Gorog, D. A. (2017). Allopurinol as a therapeutic option in cardiovascular disease. Pharmacology & Therapeutics, 172, 139–150. https://doi.org/10.1016/j.pharmthera.2016.12.004.
Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. [article]. New England Journal of Medicine, 377(12), 1119–1131. https://doi.org/10.1056/NEJMoa1707914.
Ridker, P. M., MacFadyen, J. G., Everett, B. M., Libby, P., Thuren, T., Glynn, R. J., et al. (2018). Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. [article]. Lancet, 391(10118), 319–328. https://doi.org/10.1016/s0140-6736(17)32814-3.
Chyu, K.-Y., & Shah, P. K. (2018). In pursuit of an atherosclerosis vaccine. Circulation Research, 123(10), 1121–1123. https://doi.org/10.1161/CIRCRESAHA.118.313842.
Kobiyama, K., Saigusa, R., & Ley, K. (2019). Vaccination against atherosclerosis. Current Opinion in Immunology, 59, 15–24. https://doi.org/10.1016/j.coi.2019.02.008.
Landlinger, C., Pouwer, M. G., Juno, C., van der Hoorn, J. W. A., Pieterman, E. J., Jukema, J. W., et al. (2017). The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. European Heart Journal, 38(32), 2499–2507. https://doi.org/10.1093/eurheartj/ehx260.
Davidson, M. H., Maki, K., Umporowicz, D., Wheeler, A., Rittershaus, C., & Ryan, U. (2003). The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis, 169(1), 113–120. https://doi.org/10.1016/S0021-9150(03)00137-0.
Gisterå, A., Klement, M. L., Polyzos, K. A., Mailer, R. K. W., Duhlin, A., Karlsson, M. C. I., et al. (2018). Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 138(22), 2513–2526. https://doi.org/10.1161/CIRCULATIONAHA.118.034076.
Kimura, T., Kobiyama, K., Winkels, H., Tse, K., Miller, J., Vassallo, M., et al. (2018). Regulatory CD4(+) T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation, 138(11), 1130–1143. https://doi.org/10.1161/CIRCULATIONAHA.117.031420.
Wigren, M., Rattik, S., Mattisson, I. Y., Tomas, L., Gronberg, C., Soderberg, I., et al. (2019). Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in ApoE(−/−) mice. [article]. Circulation, 139(22), 2554–2566. https://doi.org/10.1161/circulationaha.118.039288.
Seijkens, T. T. P., van Tiel, C. M., Kusters, P. J. H., Atzler, D., Soehnlein, O., Zarzycka, B., et al. (2018). Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. Journal of the American College of Cardiology, 71(5), 527–542. https://doi.org/10.1016/j.jacc.2017.11.055.
Kojima, Y., Volkmer, J.-P., McKenna, K., Civelek, M., Lusis, A. J., Miller, C. L., et al. (2016). CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 536(7614), 86–90. https://doi.org/10.1038/nature18935.
Back, M., Yurdagul, A., Tabas, I., Oorni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. [review]. Nature Reviews Cardiology, 16(7), 389–406. https://doi.org/10.1038/s41569-019-0169-2.
Kraehling, J. R., Chidlow, J. H., Rajagopal, C., Sugiyama, M. G., Fowler, J. W., Lee, M. Y., et al. (2016). Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 7(1), 13516. https://doi.org/10.1038/ncomms13516.
Huang, L., Chambliss, K. L., Gao, X., Yuhanna, I. S., Behling-Kelly, E., Bergaya, S., et al. (2019). SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature, 569(7757), 565–569. https://doi.org/10.1038/s41586-019-1140-4.
Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D., & Latz, E. (2018). Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery, 17(8), 588–606. https://doi.org/10.1038/nrd.2018.97.
Ridker, P. M. (2019). Anticytokine agents targeting interleukin signaling pathways for the treatment of atherothrombosis. Circulation Research, 124(3), 437–450. https://doi.org/10.1161/circresaha.118.313129.
Ketelhuth, D. F. J., & Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circulation Research, 118(4), 668–678. https://doi.org/10.1161/circresaha.115.306427.
Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., et al. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718–735. https://doi.org/10.1038/nrd.2017.116.
Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472. https://doi.org/10.1126/science.aaf6659.
Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. [review]. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/circresaha.118.311362.
He, H., Yuan, Q., Bie, J., Wallace, R. L., Yannie, P. J., Wang, J., et al. (2018). Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Translational Research, 193, 13–30. https://doi.org/10.1016/j.trsl.2017.10.008.
Rayner, K. J., Sheedy, F. J., Esau, C. C., Hussain, F. N., Temel, R. E., Parathath, S., et al. (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 121(7), 2921–2931.
Lu, Y., Thavarajah, T., Gu, W., Cai, J., & Xu, Q. (2018). Impact of miRNA in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), e159–e170. https://doi.org/10.1161/ATVBAHA.118.310227.
Frijhoff, J., Winyard, P. G., Zarkovic, N., Davies, S. S., Stocker, R., Cheng, D., et al. (2015). Clinical relevance of biomarkers of oxidative stress. [review]. Antioxidants & Redox Signaling, 23(14), 1144–1170. https://doi.org/10.1089/ars.2015.6317.
Funding
This this study was funded by the Swiss National Science Foundation research program NRP 62 ‘Smart Materials’ and the Basler Herzstiftung.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Associate Editor Nicola Smart oversaw the review of this article
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wolf, M.P., Hunziker, P. Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J. of Cardiovasc. Trans. Res. 13, 744–757 (2020). https://doi.org/10.1007/s12265-020-09961-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12265-020-09961-y