Skip to main content

Advertisement

Log in

Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The pathobiology of atherosclerosis and its current and potential future treatments are summarized, with a spotlight on three central cell types involved: (i) endothelial cells (ECs), (ii) macrophages, and (iii) vascular smooth muscle cells (VSMCs). (i) EC behaviour is regulated by the central transcription factors YAP/TAZ in reaction to biomechanical forces, such as hemodynamic shear stress. (ii) VSMC transdifferentiation (phenotype switching) to a macrophage-like phenotype contributes to the majority of cells positive for common cell surface macrophage markers in atherosclerotic plaques. (iii) Intra-plaque macrophages originate in a significant number from vascular resident macrophages. They can be activated via pattern recognition receptors on cell membrane (e.g. toll-like receptors) and inside cells (e.g. inflammasomes), requiring priming by neutrophil extracellular traps (NETs). ECs and macrophages can also be characterized by single-cell RNA sequencing. Adaptive immunity plays an important role in the inflammatory process. Future therapeutic options include vaccination, TRAF-STOPs, senolysis, or CD47 blockade.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., et al. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the global burden of disease study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  2. Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., et al. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., et al. (2019). Atherosclerosis. Nature Reviews Disease Primers, 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z.

    Article  PubMed  Google Scholar 

  4. DuFort, C. C., Paszek, M. J., & Weaver, V. M. (2011). Balancing forces: architectural control of mechanotransduction. [review article]. Nature Reviews Molecular Cell Biology, 12, 308. https://doi.org/10.1038/nrm3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., & Shah, V. H. (2018). Mechanosensing and fibrosis. [review]. Journal of Clinical Investigation, 128(1), 74–84. https://doi.org/10.1172/jci93561.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., et al. (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. [article]. Nature Cell Biology, 18, 540. https://doi.org/10.1038/ncb3336.

    Article  CAS  PubMed  Google Scholar 

  7. Brown, A. J., Teng, Z., Evans, P. C., Gillard, J. H., Samady, H., & Bennett, M. R. (2016). Role of biomechanical forces in the natural history of coronary atherosclerosis. [review article]. Nature Reviews Cardiology, 13, 210. https://doi.org/10.1038/nrcardio.2015.203.

    Article  PubMed  Google Scholar 

  8. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428. https://doi.org/10.1126/science.276.5317.1425.

    Article  CAS  PubMed  Google Scholar 

  9. Kwak, B. R., Krams, R., Lehoux, S., Monaco, C., Weber, C., Steffens, S., et al. (2014). Biomechanical factors in atherosclerosis: mechanisms and clinical implications†. European Heart Journal, 35(43), 3013–3020. https://doi.org/10.1093/eurheartj/ehu353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baratchi, S., Khoshmanesh, K., Woodman, O. L., Potocnik, S., Peter, K., & McIntyre, P. (2017). Molecular sensors of blood flow in endothelial cells. Trends in Molecular Medicine, 23(9), 850–868. https://doi.org/10.1016/j.molmed.2017.07.007.

    Article  CAS  PubMed  Google Scholar 

  11. Katsumi, A., Orr, A. W., Tzima, E., & Schwartz, M. A. (2004). Integrins in mechanotransduction. [review]. Journal of Biological Chemistry, 279(13), 12001–12004. https://doi.org/10.1074/jbc.R300038200.

    Article  CAS  PubMed  Google Scholar 

  12. Tarbell, J. M., Simon, S. I., & Curry, F.-R. E. (2014). Mechanosensing at the vascular interface. Annual Review of Biomedical Engineering, 16(1), 505–532. https://doi.org/10.1146/annurev-bioeng-071813-104908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mack, J. J., Mosqueiro, T. S., Archer, B. J., Jones, W. M., Sunshine, H., Faas, G. C., et al. (2017). NOTCH1 is a mechanosensor in adult arteries. Nature Communications, 8(1), 1620. https://doi.org/10.1038/s41467-017-01741-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rangel, L., Bernabé-Rubio, M., Fernández-Barrera, J., Casares-Arias, J., Millán, J., Alonso, M. A., et al. (2019). Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Scientific Reports, 9(1), 1116. https://doi.org/10.1038/s41598-018-38020-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, J., Hou, B., Tumova, S., Muraki, K., Bruns, A., Ludlow, M. J., et al. (2014). Piezo1 integration of vascular architecture with physiological force. Nature, 515, 279. https://doi.org/10.1038/nature13701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Q., Zhou, H., Chi, S., Wang, Y., Wang, J., Geng, J., et al. (2018). Structure and mechanogating mechanism of the Piezo1 channel. [article]. Nature, 554, 487. https://doi.org/10.1038/nature25743.

    Article  CAS  PubMed  Google Scholar 

  17. Rausch, V., Bostrom, J. R., Park, J., Bravo, I. R., Feng, Y., Hay, D. C., et al. (2019). The hippo pathway regulates caveolae expression and mediates flow response via caveolae. Current Biology, 29(2), 242-255.e246. https://doi.org/10.1016/j.cub.2018.11.066.

    Article  CAS  Google Scholar 

  18. Niu, N., Xu, S., Xu, Y., Little, P. J., & Jin, Z.-G. (2019). Targeting mechanosensitive transcription factors in atherosclerosis. Trends in Pharmacological Sciences, 40(4), 253–266. https://doi.org/10.1016/j.tips.2019.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. SenBanerjee, S., Lin, Z., Atkins, G. B., Greif, D. M., Rao, R. M., Kumar, A., et al. (2004). KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. The Journal of Experimental Medicine, 199(10), 1305–1315. https://doi.org/10.1084/jem.20031132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Augustin, H. G., & Koh, G. Y. (2017). Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science, 357(6353). https://doi.org/10.1126/science.aal2379.

  21. Martin, F. A., Murphy, R. P., & Cummins, P. M. (2013). Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. American Journal of Physiology-Heart and Circulatory Physiology, 304(12), H1585–H1597. https://doi.org/10.1152/ajpheart.00096.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doddaballapur, A., Michalik Katharina, M., Manavski, Y., Lucas, T., Houtkooper Riekelt, H., You, X., et al. (2015). Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), 137–145. https://doi.org/10.1161/ATVBAHA.114.304277.

    Article  CAS  PubMed  Google Scholar 

  23. Eelen, G., Zeeuw, P. d., Treps, L., Harjes, U., Wong, B. W., & Carmeliet, P. (2018). Endothelial cell metabolism. Physiological Reviews, 98(1), 3–58. https://doi.org/10.1152/physrev.00001.2017.

    Article  CAS  PubMed  Google Scholar 

  24. Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. [article]. Nature Cell Biology, 14, 249.

    Article  CAS  PubMed  Google Scholar 

  25. Totaro, A., Panciera, T., & Piccolo, S. (2018). YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 20(8), 888–899. https://doi.org/10.1038/s41556-018-0142-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, B., He, J., Lv, H., Liu, Y., Lv, X., Zhang, C., et al. (2019). c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. The Journal of Clinical Investigation, 129(3), 1167–1179. https://doi.org/10.1172/JCI122440.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, K.-C., Yeh, Y.-T., Nguyen, P., Limqueco, E., Lopez, J., Thorossian, S., et al. (2016). Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proceedings of the National Academy of Sciences, 113(41), 11525–11530. https://doi.org/10.1073/pnas.1613121113.

    Article  CAS  Google Scholar 

  28. Yu, F.-X., Zhao, B., & Guan, K.-L. (2015). Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4), 811–828. https://doi.org/10.1016/j.cell.2015.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panciera, T., Azzolin, L., Cordenonsi, M., & Piccolo, S. (2017). Mechanobiology of YAP and TAZ in physiology and disease. [review article]. Nature Reviews Molecular Cell Biology, 18, 758. https://doi.org/10.1038/nrm.2017.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rausch, V., & Hansen, C. G. (2020). The hippo pathway, YAP/TAZ, and the plasma membrane. [review]. Trends in Cell Biology, 30(1), 32–48. https://doi.org/10.1016/j.tcb.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L., Luo, J.-Y., Li, B., Tian, X. Y., Chen, L.-J., Huang, Y., et al. (2016). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature, 540, 579. https://doi.org/10.1038/nature20602.

    Article  CAS  PubMed  Google Scholar 

  32. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. [article]. Nature, 474, 179. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  33. Halder, G., Dupont, S., & Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. [perspective]. Nature Reviews Molecular Cell Biology, 13, 591. https://doi.org/10.1038/nrm3416.

    Article  CAS  PubMed  Google Scholar 

  34. Brusatin, G., Panciera, T., Gandin, A., Citron, A., & Piccolo, S. (2018). Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nature Materials, 17(12), 1063–1075. https://doi.org/10.1038/s41563-018-0180-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hikita, T., Mirzapourshafiyi, F., Barbacena, P., Riddell, M., Pasha, A., Li, M., et al. (2018). PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO reports, 19(9), e45253. https://doi.org/10.15252/embr.201745253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Briot, A., Civelek, M., Seki, A., Hoi, K., Mack, J. J., Lee, S. D., et al. (2015). Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. The Journal of Experimental Medicine, 212(12), 2147–2163. https://doi.org/10.1084/jem.20150603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, P.-Y., Qin, L., Baeyens, N., Li, G., Afolabi, T., Budatha, M., et al. (2015). Endothelial-to-mesenchymal transition drives atherosclerosis progression. The Journal of Clinical Investigation, 125(12), 4514–4528. https://doi.org/10.1172/JCI82719.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, Y., Lui, K. O., & Zhou, B. (2018). Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nature Reviews Cardiology, 15(8), 445–456. https://doi.org/10.1038/s41569-018-0023-y.

    Article  CAS  PubMed  Google Scholar 

  39. Kovacic, J. C., Dimmeler, S., Harvey, R. P., Finkel, T., Aikawa, E., Krenning, G., et al. (2019). Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 73(2), 190–209. https://doi.org/10.1016/j.jacc.2018.09.089.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Helmke, A., Casper, J., Nordlohne, J., David, S., Haller, H., Zeisberg, E. M., et al. (2019). Endothelial-to-mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. [article]. FASEB Journal, 33(2), 2278–2289. https://doi.org/10.1096/fj.201801238R.

    Article  CAS  PubMed  Google Scholar 

  41. Kalluri Aditya, S., Vellarikkal Shamsudheen, K., Edelman Elazer, R., Nguyen, L., Subramanian, A., Ellinor Patrick, T., et al. (2019). Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation, 140(2), 147–163. https://doi.org/10.1161/CIRCULATIONAHA.118.038362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, Y. S., Wollam, J., & Olefsky, J. M. (2018). An integrated view of immunometabolism. Cell, 172(1), 22–40. https://doi.org/10.1016/j.cell.2017.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.-A., Mardani, F., et al. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429.

    Article  CAS  PubMed  Google Scholar 

  44. Krenkel, O., & Tacke, F. (2017). Liver macrophages in tissue homeostasis and disease. [review]. Nature Reviews Immunology, 17(5), 306–321. https://doi.org/10.1038/nri.2017.11.

    Article  CAS  PubMed  Google Scholar 

  45. Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. [review article]. Nature Reviews Immunology, 13, 709. https://doi.org/10.1038/nri3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Genin, M., Clement, F., Fattaccioli, A., Raes, M., & Michiels, C. (2015). M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. Bmc Cancer, 15. https://doi.org/10.1186/s12885-015-1546-9.

  47. Murray, P. J. (2017). Macrophage polarization. In D. Julius (Ed.), Annual Review of Physiology, Vol 79 (Vol. 79, pp. 541–566, annual review of physiology). Palo Alto: Annual reviews.

    Google Scholar 

  48. Lawrence, T., & Natoli, G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. [review article]. Nature Reviews Immunology, 11, 750. https://doi.org/10.1038/nri3088.

    Article  CAS  PubMed  Google Scholar 

  49. Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2014). Macrophage subsets in atherosclerosis. [review article]. Nature Reviews Cardiology, 12, 10. https://doi.org/10.1038/nrcardio.2014.173.

    Article  CAS  PubMed  Google Scholar 

  50. Hoeksema, M. A., & Glass, C. K. (2019). Nature and nurture of tissue-specific macrophage phenotypes. [review]. Atherosclerosis, 281, 159–167. https://doi.org/10.1016/j.atherosclerosis.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  51. Li, C., Xu, M. M., Wang, K., Adler, A. J., Vella, A. T., & Zhou, B. (2018). Macrophage polarization and meta-inflammation. Translational Research, 191, 29–44. https://doi.org/10.1016/j.trsl.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  52. Cochain, C., Vafadarnejad, E., Arampatzi, P., Pelisek, J., Winkels, H., Ley, K., et al. (2018). Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circulation Research, 122(12), 1661–1674. https://doi.org/10.1161/Circresaha.117.312509.

    Article  CAS  PubMed  Google Scholar 

  53. Ginhoux, F., & Guilliams, M. (2016). Tissue-resident macrophage ontogeny and homeostasis. Immunity, 44(3), 439–449. https://doi.org/10.1016/j.immuni.2016.02.024.

    Article  CAS  PubMed  Google Scholar 

  54. Schulz, C., Perdiguero, E. G., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., et al. (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336(6077), 86–90. https://doi.org/10.1126/science.1219179.

    Article  CAS  PubMed  Google Scholar 

  55. Perdiguero, E. G., & Geissmann, F. (2016). The development and maintenance of resident macrophages. Nature Immunology, 17(1), 2–8. https://doi.org/10.1038/ni.3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., et al. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. [article]. Science, 363(6432), 1190−+. https://doi.org/10.1126/science.aau0964.

    Article  CAS  Google Scholar 

  57. Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., et al. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell, 159(6), 1312–1326. https://doi.org/10.1016/j.cell.2014.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y., Figueiredo, J.-L., et al. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 19, 1166. https://doi.org/10.1038/nm.3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341–355. https://doi.org/10.1016/j.cell.2011.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Binder, C. J., Papac-Milicevic, N., & Witztum, J. L. (2016). Innate sensing of oxidation-specific epitopes in health and disease. [review article]. Nature Reviews Immunology, 16, 485. https://doi.org/10.1038/nri.2016.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunological Reviews, 249(1), 158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. [review article]. Nature Reviews Immunology, 4, 499. https://doi.org/10.1038/nri1391.

    Article  CAS  PubMed  Google Scholar 

  63. Martinon, F., Mayor, A., & Tschopp, J. (2009). The inflammasomes: guardians of the body. Annual Review of Immunology, 27(1), 229–265. https://doi.org/10.1146/annurev.immunol.021908.132715.

    Article  CAS  PubMed  Google Scholar 

  64. Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464, 1357. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayashi, C., Papadopoulos, G., Gudino, C. V., Weinberg, E. O., Barth, K. R., Madrigal, A. G., et al. (2012). Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. The Journal of Immunology, 189(7), 3681. https://doi.org/10.4049/jimmunol.1201541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lundberg, A. M., Ketelhuth, D. F. J., Johansson, M. E., Gerdes, N., Liu, S., Yamamoto, M., et al. (2013). Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovascular Research, 99(2), 364–373. https://doi.org/10.1093/cvr/cvt033.

    Article  CAS  PubMed  Google Scholar 

  67. Koulis, C., Chen, Y.-C., Hausding, C., Ahrens, I., Kyaw Tin, S., Tay, C., et al. (2014). Protective role for toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E–deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 516–525. https://doi.org/10.1161/ATVBAHA.113.302407.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, C.-L., Santos, M. M., Fernandes, C., Liao, M., Iamarene, K., Zhang, J.-Y., et al. (2017). Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Scientific Reports, 7(1), 847. https://doi.org/10.1038/s41598-017-00977-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  70. Thalin, C., Hisada, Y., Lundstrom, S., Mackman, N., & Wallen, H. (2019). Neutrophil extracellular traps villains and targets in arterial, venous, and cancer-associated thrombosis. [review]. Arteriosclerosis Thrombosis and Vascular Biology, 39(9), 1724–1738. https://doi.org/10.1161/atvbaha.119.312463.

    Article  CAS  PubMed  Google Scholar 

  71. Papayannopoulos, V. (2017). Neutrophil extracellular traps in immunity and disease. [review article]. Nature Reviews Immunology, 18, 134. https://doi.org/10.1038/nri.2017.105.

    Article  CAS  PubMed  Google Scholar 

  72. Xu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., et al. (2009). Extracellular histones are major mediators of death in sepsis. Nature Medicine, 15(11), 1318–1321. https://doi.org/10.1038/nm.2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gupta, A. K., Joshi, M. B., Philippova, M., Erne, P., Hasler, P., Hahn, S., et al. (2010). Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Letters, 584(14), 3193–3197. https://doi.org/10.1016/j.febslet.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  74. Etulain, J., Martinod, K., Wong, S. L., Cifuni, S. M., Schattner, M., & Wagner, D. D. (2015). P-selectin promotes neutrophil extracellular trap formation in mice. Blood, 126(2), 242–246. https://doi.org/10.1182/blood-2015-01-624023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martinon, F., Burns, K., & Tschopp, J. (2002). The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular Cell, 10(2), 417–426. https://doi.org/10.1016/S1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  76. Warnatsch, A., Ioannou, M., Wang, Q., & Papayannopoulos, V. (2015). Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 349(6245), 316–320. https://doi.org/10.1126/science.aaa8064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen, M.-A., Karunakaran, D., Geoffrion, M., Cheng Henry, S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 49–63. https://doi.org/10.1161/ATVBAHA.117.309795.

    Article  CAS  PubMed  Google Scholar 

  78. Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 16(12), 727–744. https://doi.org/10.1038/s41569-019-0227-9.

    Article  PubMed  Google Scholar 

  79. Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis Thrombosis and Vascular Biology, 27(6), 1248–1258. https://doi.org/10.1161/atvbaha.107.141069.

    Article  CAS  PubMed  Google Scholar 

  80. Bentzon, J. F., & Majesky, M. W. (2018). Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. [review]. Cardiovascular Research, 114(4), 492–500. https://doi.org/10.1093/cvr/cvx251.

    Article  CAS  PubMed  Google Scholar 

  81. Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118(4), 692–702. https://doi.org/10.1161/circresaha.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shankman, L. S., Gomez, D., Cherepanova, O. A., Salmon, M., Alencar, G. F., Haskins, R. M., et al. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 21(6), 628–637. https://doi.org/10.1038/nm.3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. [article]. Nature, 460, 705. https://doi.org/10.1038/nature08195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xia, X.-D., Zhou, Z., Yu, X.-h., Zheng, X.-L., & Tang, C.-K. (2017). Myocardin: a novel player in atherosclerosis. Atherosclerosis, 257, 266–278. https://doi.org/10.1016/j.atherosclerosis.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  85. Rong, J. X., Shapiro, M., Trogan, E., & Fisher, E. A. (2003). Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proceedings of the National Academy of Sciences, 100(23), 13531–13536. https://doi.org/10.1073/pnas.1735526100.

    Article  CAS  Google Scholar 

  86. Pidkovka Nataliya, A., Cherepanova Olga, A., Yoshida, T., Alexander Matthew, R., Deaton Rebecca, A., Thomas James, A., et al. (2007). Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circulation Research, 101(8), 792–801. https://doi.org/10.1161/CIRCRESAHA.107.152736.

    Article  CAS  PubMed  Google Scholar 

  87. Dandré, F., & Owens, G. K. (2004). Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. American Journal of Physiology-Heart and Circulatory Physiology, 286(6), H2042–H2051. https://doi.org/10.1152/ajpheart.00625.2003.

    Article  PubMed  Google Scholar 

  88. Clément, N., Gueguen, M., Glorian, M., Blaise, R., Andréani, M., Brou, C., et al. (2007). Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. Journal of Cell Science, 120(19), 3352–3361. https://doi.org/10.1242/jcs.007872.

    Article  CAS  PubMed  Google Scholar 

  89. Caplice, N. M., Bunch, T. J., Stalboerger, P. G., Wang, S., Simper, D., Miller, D. V., et al. (2003). Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proceedings of the National Academy of Sciences, 100(8), 4754–4759. https://doi.org/10.1073/pnas.0730743100.

    Article  CAS  Google Scholar 

  90. Iwata, H., Manabe, I., Fujiu, K., Yamamoto, T., Takeda, N., Eguchi, K., et al. (2010). Bone marrow–derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation, 122(20), 2048–2057. https://doi.org/10.1161/CIRCULATIONAHA.110.965202.

    Article  CAS  PubMed  Google Scholar 

  91. Silvestre-Roig, C., Braster, Q., Wichapong, K., Lee, E. Y., Teulon, J. M., Berrebeh, N., et al. (2019). Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 569(7755), 236–240. https://doi.org/10.1038/s41586-019-1167-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gistera, A., & Hansson, G. K. (2017). The immunology of atherosclerosis. Nature Reviews Nephrology, 13(6). https://doi.org/10.1038/nrneph.2017.51.

  93. Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12(3), 204–212.

    Article  CAS  PubMed  Google Scholar 

  94. Abdolmaleki, F., Gheibi Hayat, S. M., Bianconi, V., Johnston, T. P., & Sahebkar, A. (2019). Atherosclerosis and immunity: a perspective. Trends in Cardiovascular Medicine, 29(6), 363–371. https://doi.org/10.1016/j.tcm.2018.09.017.

    Article  CAS  PubMed  Google Scholar 

  95. Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., et al. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. The Journal of Experimental Medicine, 204(1), 57–63. https://doi.org/10.1084/jem.20061852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Libby, P., Nahrendorf, M., & Swirski, F. K. (2016). Leukocytes link local and systemic inflammation in ischemic cardiovascular disease an expanded “cardiovascular continuum”. Journal of the American College of Cardiology, 67(9), 1091–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. [review]. Lancet, 388(10059), 2532–2561. https://doi.org/10.1016/s0140-6736(16)31357-5.

    Article  CAS  PubMed  Google Scholar 

  98. Ward Natalie, C., Watts Gerald, F., & Eckel Robert, H. (2019). Statin toxicity. Circulation Research, 124(2), 328–350. https://doi.org/10.1161/CIRCRESAHA.118.312782.

    Article  CAS  PubMed  Google Scholar 

  99. Oesterle, A., Laufs, U., & Liao, J. K. (2017). Pleiotropic effects of statins on the cardiovascular system. [review]. Circulation Research, 120(1), 229–243. https://doi.org/10.1161/circresaha.116.308537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tousoulis, D., Psarros, C., Demosthenous, M., Patel, R., Antoniades, C., & Stefanadis, C. (2014). Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. Journal of the American College of Cardiology, 63(23), 2491–2502. https://doi.org/10.1016/j.jacc.2014.01.054.

    Article  CAS  PubMed  Google Scholar 

  101. Davignon, J. (2004). Beneficial cardiovascular pleiotropic effects of statins. [article]. Circulation, 109(23), 39–43. https://doi.org/10.1161/01.CIR.0000131517.20177.5a.

    Article  CAS  Google Scholar 

  102. Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G. B., Das, H., et al. (2005). Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 112(5), 720–726. https://doi.org/10.1161/CIRCULATIONAHA.104.525774.

    Article  CAS  PubMed  Google Scholar 

  103. Laufs, U., La Fata, V., Plutzky, J., & Liao James, K. (1998). Upregulation of endothelial nitric oxide synthase by HMG CoA Reductase inhibitors. Circulation, 97(12), 1129–1135. https://doi.org/10.1161/01.CIR.97.12.1129.

    Article  CAS  PubMed  Google Scholar 

  104. Mulhaupt, F., Matter, C. M., Kwak, B. R., Pelli, G., Veillard, N. R., Burger, F., et al. (2003). Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells. Cardiovascular Research, 59(3), 755–766. https://doi.org/10.1016/S0008-6363(03)00515-7.

    Article  CAS  PubMed  Google Scholar 

  105. De Caterina, R., Libby, P., Peng, H. B., Thannickal, V. J., Rajavashisth, T. B., Gimbrone Jr., M. A., et al. (1995). Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. The Journal of Clinical Investigation, 96(1), 60–68. https://doi.org/10.1172/JCI118074.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wassmann, S., Laufs, U., Bäumer, A. T., Müller, K., Ahlbory, K., Linz, W., et al. (2001). HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension, 37(6), 1450–1457. https://doi.org/10.1161/01.HYP.37.6.1450.

    Article  CAS  PubMed  Google Scholar 

  107. Bahrami, A., Parsamanesh, N., Atkin, S. L., Banach, M., & Sahebkar, A. (2018). Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacological Research, 135, 230–238. https://doi.org/10.1016/j.phrs.2018.08.014.

    Article  CAS  PubMed  Google Scholar 

  108. Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. [article]. Nature Cell Biology, 16, 357. https://doi.org/10.1038/ncb2936.

    Article  CAS  PubMed  Google Scholar 

  109. Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51(3), 246–252.

    Article  CAS  PubMed  Google Scholar 

  110. Weitz-Schmidt, G., Welzenbach, K., Brinkmann, V., Kamata, T., Kallen, J., Bruns, C., et al. (2001). Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Medicine, 7(6), 687–692. https://doi.org/10.1038/89058.

    Article  CAS  PubMed  Google Scholar 

  111. Leisegang, M. S., Bibli, S. I., Guenther, S., Pfluger-Muller, B., Oo, J. A., Hoper, C., et al. (2019). Pleiotropic effects of laminar flow and statins depend on the Kruppel-like factor-induced lncRNA MANTIS. [article]. European Heart Journal, 40(30), 2523–2533. https://doi.org/10.1093/eurheartj/ehz393.

    Article  CAS  PubMed  Google Scholar 

  112. Li, M., Liu, Y., Dutt, P., Fanburg, B. L., & Toksoz, D. (2007). Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293(2), L463–L471. https://doi.org/10.1152/ajplung.00133.2007.

    Article  CAS  PubMed  Google Scholar 

  113. Luan, Z., Chase Alex, J., & Newby Andrew, C. (2003). Statins inhibit secretion of metalloproteinases-1, −2, −3, and −9 from vascular smooth muscle cells and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(5), 769–775. https://doi.org/10.1161/01.ATV.0000068646.76823.AE.

    Article  CAS  PubMed  Google Scholar 

  114. Rezaie-Majd, A., Maca, T., Bucek Robert, A., Valent, P., Müller Michael, R., Husslein, P., et al. (2002). Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(7), 1194–1199. https://doi.org/10.1161/01.ATV.0000022694.16328.CC.

    Article  PubMed  Google Scholar 

  115. Ridker, P. M., Danielson, E., Fonseca, F. A. H., Genest, J., Gotto, A. M., Kastelein, J. J. P., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359(21), 2195–2207. https://doi.org/10.1056/NEJMoa0807646.

    Article  CAS  PubMed  Google Scholar 

  116. Milajerdi, A., Larijani, B., & Esmaillzadeh, A. (2019). Statins influence biomarkers of low grade inflammation in apparently healthy people or patients with chronic diseases: a systematic review and meta-analysis of randomized clinical trials. [Review]. Cytokine, 123, 13. https://doi.org/10.1016/j.cyto.2019.154752.

    Article  CAS  Google Scholar 

  117. Dichtl, W., Dulak, J., Frick, M., Alber Hannes, F., Schwarzacher Severin, P., Ares Mikko, P. S., et al. (2003). HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(1), 58–63. https://doi.org/10.1161/01.ATV.0000043456.48735.20.

    Article  CAS  PubMed  Google Scholar 

  118. Ghittoni, R., Napolitani, G., Benati, D., Uliveri, C., Patrussi, L., Laghi Pasini, F., et al. (2006). Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. European Journal of Immunology, 36(11), 2885–2893. https://doi.org/10.1002/eji.200636567.

    Article  PubMed  Google Scholar 

  119. Cannon, C. P., Blazing, M. A., Giugliano, R. P., McCagg, A., White, J. A., Theroux, P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. New England Journal of Medicine, 372(25), 2387–2397. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  120. Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. New England Journal of Medicine, 376(18), 1713–1722. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  121. Nicholls, S. J., Puri, R., Anderson, T., Ballantyne, C. M., Cho, L., Kastelein, J. J. P., et al. (2016). Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA, 316(22), 2373–2384. https://doi.org/10.1001/jama.2016.16951.

  122. Nicholls, S. J., Puri, R., Anderson, T., Ballantyne, C. M., Cho, L., Kastelein, J. J. P., et al. (2018). Effect of Evolocumab on coronary plaque composition. Journal of the American College of Cardiology, 72(17), 2012–2021. https://doi.org/10.1016/j.jacc.2018.06.078.

    Article  CAS  PubMed  Google Scholar 

  123. Hegele, R. A., & Tsimikas, S. (2019). Lipid-lowering agents targets beyond PCSK9. Circulation Research, 124(3), 386–404. https://doi.org/10.1161/circresaha.118.313171.

    Article  CAS  PubMed  Google Scholar 

  124. Byrne, R. A., Stone, G. W., Ormiston, J., & Kastrati, A. (2017). Coronary balloon angioplasty, stents, and scaffolds. The Lancet, 390(10096), 781–792. https://doi.org/10.1016/S0140-6736(17)31927-X.

    Article  Google Scholar 

  125. Bhatt, D. L., Steg, P. G., Miller, M., Brinton, E. A., Jacobson, T. A., Ketchum, S. B., et al. (2018). Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New England Journal of Medicine, 380(1), 11–22. https://doi.org/10.1056/NEJMoa1812792.

    Article  PubMed  Google Scholar 

  126. Nordestgaard, B. G., Nicholls, S. J., Langsted, A., Ray, K. K., & Tybjoerg-Hansen, A. (2018). Advances in lipid-lowering therapy through gene-silencing technologies. [review]. Nature Reviews Cardiology, 15(5), 261–272. https://doi.org/10.1038/nrcardio.2018.3.

    Article  CAS  PubMed  Google Scholar 

  127. Ray, K. K., Landmesser, U., Leiter, L. A., Kallend, D., Dufour, R., Karakas, M., et al. (2017). Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. New England Journal of Medicine, 376(15), 1430–1440. https://doi.org/10.1056/NEJMoa1615758.

    Article  CAS  PubMed  Google Scholar 

  128. Graham, M. J., Lee, R. G., Brandt, T. A., Tai, L. J., Fu, W. X., Peralta, R., et al. (2017). Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. New England Journal of Medicine, 377(3), 222–232. https://doi.org/10.1056/NEJMoa1701329.

    Article  CAS  PubMed  Google Scholar 

  129. Viney, N. J., van Capelleveen, J. C., Geary, R. S., Xia, S. T., Tami, J. A., Yu, R. Z., et al. (2016). Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. [article]. Lancet, 388(10057), 2239–2253. https://doi.org/10.1016/s0140-6736(16)31009-1.

    Article  CAS  PubMed  Google Scholar 

  130. Collaborative, H. T. R. (2017). Effects of anacetrapib in patients with atherosclerotic vascular disease. [article]. New England Journal of Medicine, 377(13), 1217–1227. https://doi.org/10.1056/NEJMoa1706444.

    Article  Google Scholar 

  131. Bäck, M., & Hansson, G. K. (2015). Anti-inflammatory therapies for atherosclerosis. [review article]. Nature Reviews Cardiology, 12, 199. https://doi.org/10.1038/nrcardio.2015.5.

    Article  CAS  PubMed  Google Scholar 

  132. Ridker, P. M., Everett, B. M., Pradhan, A., MacFadyen, J. G., Solomon, D. H., Zaharris, E., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. New England Journal of Medicine, 380(8), 752–762. https://doi.org/10.1056/NEJMoa1809798.

    Article  CAS  PubMed  Google Scholar 

  133. Hemkens, L. G., Ewald, H., Gloy, V. L., Arpagaus, A., Olu, K. K., Nidorf, M., et al. (2016). Colchicine for prevention of cardiovascular events. Cochrane Database of Systematic Reviews, 1. https://doi.org/10.1002/14651858.CD011047.pub2.

  134. Martínez, G. J., Celermajer, D. S., & Patel, S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 269, 262–271. https://doi.org/10.1016/j.atherosclerosis.2017.12.027.

    Article  CAS  PubMed  Google Scholar 

  135. Okafor, O. N., Farrington, K., & Gorog, D. A. (2017). Allopurinol as a therapeutic option in cardiovascular disease. Pharmacology & Therapeutics, 172, 139–150. https://doi.org/10.1016/j.pharmthera.2016.12.004.

    Article  CAS  Google Scholar 

  136. Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. [article]. New England Journal of Medicine, 377(12), 1119–1131. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  137. Ridker, P. M., MacFadyen, J. G., Everett, B. M., Libby, P., Thuren, T., Glynn, R. J., et al. (2018). Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. [article]. Lancet, 391(10118), 319–328. https://doi.org/10.1016/s0140-6736(17)32814-3.

    Article  CAS  PubMed  Google Scholar 

  138. Chyu, K.-Y., & Shah, P. K. (2018). In pursuit of an atherosclerosis vaccine. Circulation Research, 123(10), 1121–1123. https://doi.org/10.1161/CIRCRESAHA.118.313842.

    Article  CAS  PubMed  Google Scholar 

  139. Kobiyama, K., Saigusa, R., & Ley, K. (2019). Vaccination against atherosclerosis. Current Opinion in Immunology, 59, 15–24. https://doi.org/10.1016/j.coi.2019.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Landlinger, C., Pouwer, M. G., Juno, C., van der Hoorn, J. W. A., Pieterman, E. J., Jukema, J. W., et al. (2017). The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. European Heart Journal, 38(32), 2499–2507. https://doi.org/10.1093/eurheartj/ehx260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Davidson, M. H., Maki, K., Umporowicz, D., Wheeler, A., Rittershaus, C., & Ryan, U. (2003). The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis, 169(1), 113–120. https://doi.org/10.1016/S0021-9150(03)00137-0.

    Article  CAS  PubMed  Google Scholar 

  142. Gisterå, A., Klement, M. L., Polyzos, K. A., Mailer, R. K. W., Duhlin, A., Karlsson, M. C. I., et al. (2018). Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 138(22), 2513–2526. https://doi.org/10.1161/CIRCULATIONAHA.118.034076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kimura, T., Kobiyama, K., Winkels, H., Tse, K., Miller, J., Vassallo, M., et al. (2018). Regulatory CD4(+) T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation, 138(11), 1130–1143. https://doi.org/10.1161/CIRCULATIONAHA.117.031420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wigren, M., Rattik, S., Mattisson, I. Y., Tomas, L., Gronberg, C., Soderberg, I., et al. (2019). Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in ApoE(−/−) mice. [article]. Circulation, 139(22), 2554–2566. https://doi.org/10.1161/circulationaha.118.039288.

    Article  CAS  PubMed  Google Scholar 

  145. Seijkens, T. T. P., van Tiel, C. M., Kusters, P. J. H., Atzler, D., Soehnlein, O., Zarzycka, B., et al. (2018). Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. Journal of the American College of Cardiology, 71(5), 527–542. https://doi.org/10.1016/j.jacc.2017.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kojima, Y., Volkmer, J.-P., McKenna, K., Civelek, M., Lusis, A. J., Miller, C. L., et al. (2016). CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 536(7614), 86–90. https://doi.org/10.1038/nature18935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Back, M., Yurdagul, A., Tabas, I., Oorni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. [review]. Nature Reviews Cardiology, 16(7), 389–406. https://doi.org/10.1038/s41569-019-0169-2.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kraehling, J. R., Chidlow, J. H., Rajagopal, C., Sugiyama, M. G., Fowler, J. W., Lee, M. Y., et al. (2016). Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 7(1), 13516. https://doi.org/10.1038/ncomms13516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang, L., Chambliss, K. L., Gao, X., Yuhanna, I. S., Behling-Kelly, E., Bergaya, S., et al. (2019). SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature, 569(7757), 565–569. https://doi.org/10.1038/s41586-019-1140-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D., & Latz, E. (2018). Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery, 17(8), 588–606. https://doi.org/10.1038/nrd.2018.97.

    Article  CAS  PubMed  Google Scholar 

  151. Ridker, P. M. (2019). Anticytokine agents targeting interleukin signaling pathways for the treatment of atherothrombosis. Circulation Research, 124(3), 437–450. https://doi.org/10.1161/circresaha.118.313129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ketelhuth, D. F. J., & Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circulation Research, 118(4), 668–678. https://doi.org/10.1161/circresaha.115.306427.

    Article  CAS  PubMed  Google Scholar 

  153. Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., et al. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718–735. https://doi.org/10.1038/nrd.2017.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472. https://doi.org/10.1126/science.aaf6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. [review]. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/circresaha.118.311362.

    Article  CAS  PubMed  Google Scholar 

  156. He, H., Yuan, Q., Bie, J., Wallace, R. L., Yannie, P. J., Wang, J., et al. (2018). Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Translational Research, 193, 13–30. https://doi.org/10.1016/j.trsl.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  157. Rayner, K. J., Sheedy, F. J., Esau, C. C., Hussain, F. N., Temel, R. E., Parathath, S., et al. (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 121(7), 2921–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lu, Y., Thavarajah, T., Gu, W., Cai, J., & Xu, Q. (2018). Impact of miRNA in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), e159–e170. https://doi.org/10.1161/ATVBAHA.118.310227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Frijhoff, J., Winyard, P. G., Zarkovic, N., Davies, S. S., Stocker, R., Cheng, D., et al. (2015). Clinical relevance of biomarkers of oxidative stress. [review]. Antioxidants & Redox Signaling, 23(14), 1144–1170. https://doi.org/10.1089/ars.2015.6317.

    Article  CAS  Google Scholar 

Download references

Funding

This this study was funded by the Swiss National Science Foundation research program NRP 62 ‘Smart Materials’ and the Basler Herzstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc P. Wolf.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M.P., Hunziker, P. Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J. of Cardiovasc. Trans. Res. 13, 744–757 (2020). https://doi.org/10.1007/s12265-020-09961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09961-y

Keywords

Navigation