Skip to main content
Log in

Curcumin Induces Endothelium-Dependent Relaxation by Activating Endothelial TRPV4 Channels

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

It is well-known that curcumin, as a plant substance, has vascular protective effects. TRPV4 (transient receptor potential vanilloid 4) is a highly Ca2+-selective channel in vascular endothelium. In our study, fluorescent Ca2+ imaging in mesenteric arterial endothelial cells (MAECs) and overexpressed TRPV4 human embryonic kidney (HEK293) cells showed that curcumin dose-dependently stimulated Ca2+ influx. Whole-cell patch clamp proved that curcumin stimulated the TRPV4-mediated currents in TRPV4-HEK293 cells. The TRPV4-specific blocker HC067047 markedly decreased the whole-cell current. Molecular modeling and docking showed that the binding site of curcumin and TRPV4 was mainly in the amino acid sequence LYS340-LEU349 of TRPV4 protein. Furthermore, curcumin dose-dependently induced the endothelium-dependent vessel dilatation in small mesenteric arteries. Therefore, our results demonstrated that curcumin stimulates Ca2+ entry in endothelial cells and improves endothelium-dependent vessel relaxation by activating TRPV4 channels. Moreover, we identified the specific binding sites of curcumin and TRPV4, thereby highlighting its potential therapeutic target of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TRPV4:

Transient receptor potential vanilloid 4

WT:

Wild type

MAECs:

Mesenteric arterial endothelial cells

Cur:

Curcumin

TRPV4−/− :

TRPV4 knockout

Phe:

Phenylephrine

References

  1. Stanic, Z. (2017). Curcumin, a compound from natural sources, a true scientific challenge-a review. Plant Foods for Human Nutrition, 72(1), 1-12, doi:https://doi.org/10.1007/s11130-016-0590-1.

    Article  Google Scholar 

  2. Lelli, D., Sahebkar, A., Johnston, T. P., & Pedone, C. (2017). Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacological Research, 115, 133–148. https://doi.org/10.1016/j.phrs.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  3. Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z., & Sahebkar, A. (2017). Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy, 85, 102–112. https://doi.org/10.1016/j.biopha.2016.11.098.

    Article  CAS  Google Scholar 

  4. Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75. https://doi.org/10.1007/978-0-387-46401-5_1.

    Article  PubMed  Google Scholar 

  5. Xu, X. Y., Meng, X., Li, S., Gan, R. Y., Li, Y., & Li, H. B. (2018). Bioactivity, Health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients, 10(10). https://doi.org/10.3390/nu10101553.

    Article  Google Scholar 

  6. Srivastava, K. C., Bordia, A., & Verma, S. K. (1995). Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 52(4), 223–227. https://doi.org/10.1016/0952-3278(95)90040-3.

    Article  CAS  PubMed  Google Scholar 

  7. Ramirez Bosca, A., Carrion Gutierrez, M. A., Soler, A., Puerta, C., Diez, A., Quintanilla, E., et al. (1997). Effects of the antioxidant turmeric on lipoprotein peroxides: implications for the prevention of atherosclerosis. Age (Omaha), 20(3), 165–168. https://doi.org/10.1007/s11357-997-0015-z.

    Article  CAS  Google Scholar 

  8. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23(1A), 363–398.

    CAS  PubMed  Google Scholar 

  9. Xu, P. H., Long, Y., Dai, F., & Liu, Z. L. (2007). The relaxant effect of curcumin on porcine coronary arterial ring segments. Vascular Pharmacology, 47(1), 25–30. https://doi.org/10.1016/j.vph.2007.03.003.

    Article  CAS  PubMed  Google Scholar 

  10. Dash, J. R., & Parija, S. C. (2013). Spasmolytic effect of curcumin on goat ruminal artery is endothelium independent and by activation of sGC. Research in Veterinary Science, 95(2), 588–593. https://doi.org/10.1016/j.rvsc.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  11. Peixoto-Neves, D., Wang, Q., Leal-Cardoso, J. H., Rossoni, L. V., & Jaggar, J. H. (2015). Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels. British Journal of Pharmacology, 172(14), 3484–3494. https://doi.org/10.1111/bph.13156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia, R. L., & Schilling, W. P. (1997). Differential expression of mammalian TRP homologues across tissues and cell lines. Biochemical and Biophysical Research Communications, 239(1), 279–283. https://doi.org/10.1006/bbrc.1997.7458.

    Article  CAS  PubMed  Google Scholar 

  13. Bubolz, A. H., Mendoza, S. A., Zheng, X., Zinkevich, N. S., Li, R., Gutterman, D. D., et al. (2012). Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. American Journal of Physiology. Heart and Circulatory Physiology, 302(3), H634–H642. https://doi.org/10.1152/ajpheart.00717.2011.

    Article  CAS  PubMed  Google Scholar 

  14. Pankey, E. A., Zsombok, A., Lasker, G. F., & Kadowitz, P. J. (2014). Analysis of responses to the TRPV4 agonist GSK1016790A in the pulmonary vascular bed of the intact-chest rat. American Journal of Physiology. Heart and Circulatory Physiology, 306(1), H33–H40. https://doi.org/10.1152/ajpheart.00303.2013.

    Article  CAS  PubMed  Google Scholar 

  15. Saifeddine, M., El-Daly, M., Mihara, K., Bunnett, N. W., McIntyre, P., Altier, C., et al. (2015). GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. British Journal of Pharmacology, 172(10), 2493–2506. https://doi.org/10.1111/bph.13072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendoza, S. A., Fang, J., Gutterman, D. D., Wilcox, D. A., Bubolz, A. H., Li, R., et al. (2010). TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. American Journal of Physiology. Heart and Circulatory Physiology, 298(2), H466–H476. https://doi.org/10.1152/ajpheart.00854.2009.

    Article  CAS  PubMed  Google Scholar 

  17. Ma, X., Du, J., Zhang, P., Deng, J., Liu, J., Lam, F. F., et al. (2013). Functional role of TRPV4-KCa2.3 signaling in vascular endothelial cells in normal and streptozotocin-induced diabetic rats. Hypertension, 62(1), 134–139. https://doi.org/10.1161/HYPERTENSIONAHA.113.01500.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, D. X., Mendoza, S. A., Bubolz, A. H., Mizuno, A., Ge, Z. D., Li, R., et al. (2009). Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension, 53(3), 532–538. https://doi.org/10.1161/HYPERTENSIONAHA.108.127100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki, M., Mizuno, A., Kodaira, K., & Imai, M. (2003). Impaired pressure sensation in mice lacking TRPV4. The Journal of Biological Chemistry, 278(25), 22664–22668. https://doi.org/10.1074/jbc.M302561200.

    Article  CAS  PubMed  Google Scholar 

  20. He, D., Pan, Q., Chen, Z., Sun, C., Zhang, P., Mao, A., et al. (2017). Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Molecular Medicine, 9(11), 1491–1503. https://doi.org/10.15252/emmm.201707725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan, L., Zhang, Y., Lu, J., Geng, Z., Jia, L., Rong, X., et al. (2015). Panax notoginseng saponins ameliorates coxsackievirus B3-induced myocarditis by activating the cystathionine-gamma-lyase/hydrogen sulfide pathway. Journal of Cardiovascular Translational Research, 8(9), 536–544. https://doi.org/10.1007/s12265-015-9659-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vanhoutte, P. M., Feletou, M., & Taddei, S. (2005). Endothelium-dependent contractions in hypertension. British Journal of Pharmacology, 144(4), 449–458. https://doi.org/10.1038/sj.bjp.0706042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao, S. N., Head, M. S., Kulkarni, A., & LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47(6), 2159–2171. https://doi.org/10.1021/ci6004299.

    Article  CAS  PubMed  Google Scholar 

  24. Inada, H., Procko, E., Sotomayor, M., & Gaudet, R. (2012). Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry, 51(31), 6195–6206. https://doi.org/10.1021/bi300279b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, X., He, D., Ru, X., Chen, Y., Cai, Y., Bruce, I. C., et al. (2012). Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. British Journal of Pharmacology, 166(1), 349–358. https://doi.org/10.1111/j.1476-5381.2011.01767.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Figtree, G. A., Griffiths, H., Lu, Y. Q., Webb, C. M., MacLeod, K., & Collins, P. (2000). Plant-derived estrogens relax coronary arteries in vitro by a calcium antagonistic mechanism. Journal of the American College of Cardiology, 35(7), 1977–1985. https://doi.org/10.1016/s0735-1097(00)00645-8.

    Article  CAS  PubMed  Google Scholar 

  27. Pan, Z., Feng, T., Shan, L., Cai, B., Chu, W., Niu, H., et al. (2008). Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytotherapy Research, 22(11), 1428–1433. https://doi.org/10.1002/ptr.2364.

    Article  CAS  PubMed  Google Scholar 

  28. Olszanecki, R., Jawien, J., Gajda, M., Mateuszuk, L., Gebska, A., Korabiowska, M., et al. (2005). Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. Journal of Physiology and Pharmacology, 56(4), 627–635.

    CAS  PubMed  Google Scholar 

  29. Yao, Q. H., Wang, D. Q., Cui, C. C., Yuan, Z. Y., Chen, S. B., Yao, X. W., et al. (2004). Curcumin ameliorates left ventricular function in rabbits with pressure overload: inhibition of the remodeling of the left ventricular collagen network associated with suppression of myocardial tumor necrosis factor-alpha and matrix metalloproteinase-2 expression. Biological & Pharmaceutical Bulletin, 27(2), 198–202.

    Article  CAS  Google Scholar 

  30. Mohanty, I., Arya, D. S., & Gupta, S. K. (2006). Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complementary and Alternative Medicine, 6, 3. https://doi.org/10.1186/1472-6882-6-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shimokawa, H., Yasutake, H., Fujii, K., Owada, M. K., Nakaike, R., Fukumoto, Y., et al. (1996). The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. Journal of Cardiovascular Pharmacology, 28(5), 703–711. https://doi.org/10.1097/00005344-199611000-00014.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the China National Natural Science Foundation (81622007, to Xin Ma). This project was also supported by the Chang Jiang Scholars Program (Q2015106, to Xin Ma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All animal experiments were conducted in compliance with the guidance of Animal Care and Use of Laboratory Animals published by the US National Institute of Health and with the approval of the Animal Experimentations Ethics Committee, Jiangnan University.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Han, J., Zhu, Y. et al. Curcumin Induces Endothelium-Dependent Relaxation by Activating Endothelial TRPV4 Channels. J. of Cardiovasc. Trans. Res. 12, 600–607 (2019). https://doi.org/10.1007/s12265-019-09928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09928-8

Keywords

Navigation