Skip to main content
Log in

Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

High-throughput proteomics profiling has never been applied to discover biomarkers in patients with hypertrophic cardiomyopathy (HCM). The objective was to identify plasma protein biomarkers that can distinguish HCM from controls. We performed a case-control study of patients with HCM (n = 15) and controls (n = 22). We carried out plasma proteomics profiling of 1129 proteins using the SOMAscan assay. We used the sparse partial least squares discriminant analysis to identify 50 most discriminant proteins. We also determined the area under the curve (AUC) of the receiver operating characteristic curve using the Monte Carlo cross validation with balanced subsampling. The average AUC was 0.94 (95% confidence interval, 0.82–1.00) and the discriminative accuracy was 89%. In HCM, 13 out of the 50 proteins correlated with troponin I and 12 with New York Heart Association class. Proteomics profiling can be used to elucidate protein biomarkers that distinguish HCM from controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BNP:

Brain natriuretic peptide

FDR:

False discovery rate

HCM:

Hypertrophic cardiomyopathy

LV:

Left ventricular

MCCV:

Monte Carlo cross validation

NYHA:

New York Heart Association

sPLS-DA:

Sparse partial least squares discriminant analysis

VIP:

Variable importance in projection

References

  1. Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92, 785–789.

    Article  CAS  Google Scholar 

  2. Marsiglia, J. D., Credidio, F. L., de Oliveira, T. G., Reis, R. F., Antunes, M. O., de Araujo, A. Q., et al. (2014). Clinical predictors of a positive genetic test in hypertrophic cardiomyopathy in the Brazilian population. BMC Cardiovascular Disorders, 14, 36.

    Article  Google Scholar 

  3. Hathout, Y., Brody, E., Clemens, P. R., Cripe, L., DeLisle, R. K., Furlong, P., et al. (2015). Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 112, 7153–7158.

    Article  CAS  Google Scholar 

  4. Kiddle, S. J., Sattlecker, M., Proitsi, P., Simmons, A., Westman, E., Bazenet, C., et al. (2014). Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study. Journal of Alzheimer's Disease, 38, 515–531.

    Article  CAS  Google Scholar 

  5. Marion, T., Elbahesh, H., Thomas, P. G., DeVincenzo, J. P., Webby, R., & Schughart, K. (2016). Respiratory mucosal proteome quantification in human influenza infections. PLoS One, 11, e0153674.

    Article  Google Scholar 

  6. Mehan, M. R., Ayers, D., Thirstrup, D., Xiong, W., Ostroff, R. M., Brody, E. N., et al. (2012). Protein signature of lung cancer tissues. PLoS One, 7, e35157.

    Article  CAS  Google Scholar 

  7. Webber, J., Stone, T. C., Katilius, E., Smith, B. C., Gordon, B., Mason, M. D., et al. (2014). Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform. Molecular & Cellular Proteomics, 13, 1050–1064.

    Article  CAS  Google Scholar 

  8. Nahid, P., Bliven-Sizemore, E., Jarlsberg, L. G., De Groote, M. A., Johnson, J. L., Muzanyi, G., et al. (2014). Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis, 94, 187–196.

    Article  CAS  Google Scholar 

  9. McArdle, A., Butt, A. Q., Szentpetery, A., de Jager, W., de Roock, S., FitzGerald, O., et al. (2015). Developing clinically relevant biomarkers in inflammatory arthritis: a multi-platform approach for serum candidate protein discovery. Proteomics. Clinical Applications.

  10. Ngo, D., Sinha, S., Shen, D., Kuhn, E., Keyes, M., Shi, X., et al. (2016). Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation, 134, 270–285.

    Article  CAS  Google Scholar 

  11. Seidman, C. E., & Seidman, J. G. (2011). Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circulation Research, 108, 743–750.

    Article  CAS  Google Scholar 

  12. Ho, C. Y., Lopez, B., Coelho-Filho, O. R., Lakdawala, N. K., Cirino, A. L., Jarolim, P., et al. (2010). Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. NEJM, 363, 552–563.

    Article  CAS  Google Scholar 

  13. Gersh, B. J., Maron, B. J., Bonow, R. O., Dearani, J. A., Fifer, M. A., Link, M. S., et al. (2011). 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 58, e212–e260.

    Article  CAS  Google Scholar 

  14. McCullough, S. A., Fifer, M. A., Mohajer, P., Lowry, P. A., Reen, C. O., Baggish, A. L., et al. (2018). Clinical correlates and prognostic value of elevated right atrial pressure in patients with hypertrophic cardiomyopathy. Circulation Journal, 82, 1405–1411.

    Article  Google Scholar 

  15. Hensley, P. (2013). SOMAmers and SOMAscan – a protein biomarker discovery platform for rapid analysis of sample collections from bench top to the clinic. Journal of Biomolecular Techniques, S5.

  16. Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., et al. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 5, e15004.

    Article  CAS  Google Scholar 

  17. Kraemer, S., Vaught, J. D., Bock, C., Gold, L., Katilius, E., Keeney, T. R., et al. (2011). From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One, 6, e26332.

    Article  CAS  Google Scholar 

  18. Le Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics, 12, 253.

    Article  Google Scholar 

  19. Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45, D362–D368.

    Article  CAS  Google Scholar 

  21. Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., & Ploner, A. (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 3017–3024.

    Article  CAS  Google Scholar 

  22. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    Article  CAS  Google Scholar 

  23. Orenes-Pinero, E., Hernandez-Romero, D., de Torre, C., Vilchez, J. A., Martinez, M., Romero-Aniorte, A. I., et al. (2013). Identification and confirmation of haptoglobin as a potential serum biomarker in hypertrophic cardiomyopathy using proteomic approaches. Annals of Medicine, 45, 341–347.

    Article  CAS  Google Scholar 

  24. Rehulkova, H., Rehulka, P., Myslivcova Fucikova, A., Stulik, J., & Pudil, R. (2016). Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure. Physiological Research, 65, 751–762.

    CAS  PubMed  Google Scholar 

  25. Kubo, T., Okumiya, T., Baba, Y., Hirota, T., Tanioka, K., Yamasaki, N., et al. (2016). Erythrocyte creatine as a marker of intravascular hemolysis due to left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Journal of Cardiology, 67, 274–278.

    Article  Google Scholar 

  26. Kawakami, Y., Kitaura, J., Yao, L., McHenry, R. W., Kawakami, Y., Newton, A. C., et al. (2003). A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 100, 9470–9475.

    Article  CAS  Google Scholar 

  27. Goode, N., Hughes, K., Woodgett, J. R., & Parker, P. J. (1992). Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. The Journal of Biological Chemistry, 267, 16878–16882.

    CAS  PubMed  Google Scholar 

  28. Shen, D., Podolnikova, N. P., Yakubenko, V. P., Ardell, C. L., Balabiyev, A., Ugarova, T. P., et al. (2017). Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin mac-1. The Journal of Biological Chemistry, 292, 18848–18861.

    Article  CAS  Google Scholar 

  29. Muramatsu, T. (2014). Structure and function of midkine as the basis of its pharmacological effects. British Journal of Pharmacology, 171, 814–826.

    Article  CAS  Google Scholar 

  30. Zheng, Y., Zhang, C., Croucher, D. R., Soliman, M. A., St-Denis, N., Pasculescu, A., et al. (2013). Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature, 499, 166–171.

    Article  CAS  Google Scholar 

  31. Giglione, C., Gonfloni, S., & Parmeggiani, A. (2001). Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm. European Journal of Biochemistry, 268, 3275–3283.

    Article  CAS  Google Scholar 

  32. Kishi, T., Hirooka, Y., Konno, S., Ogawa, K., & Sunagawa, K. (2010). Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension, 55, 291–297.

    Article  CAS  Google Scholar 

  33. Yang, W., Xia, Y., Cao, Y., Zheng, Y., Bu, W., Zhang, L., et al. (2012). EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Molecular Cell, 48, 771–784.

    Article  CAS  Google Scholar 

  34. Wu, X., Simpson, J., Hong, J. H., Kim, K. H., Thavarajah, N. K., Backx, P. H., et al. (2011). MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation. The Journal of Clinical Investigation, 121, 1009–1025.

    Article  CAS  Google Scholar 

  35. Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38, 331–336.

    Article  CAS  Google Scholar 

  36. Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.

    Article  CAS  Google Scholar 

  37. Rauen, K. A. (2013). The RASopathies. Annual Review of Genomics and Human Genetics, 14, 355–369.

    Article  CAS  Google Scholar 

  38. Park, K. C., Gaze, D. C., Collinson, P. O., & Marber, M. S. (2017). Cardiac troponins: from myocardial infarction to chronic disease. Cardiovascular Research, 113, 1708–1718.

    Article  CAS  Google Scholar 

  39. Tsybouleva, N., Zhang, L., Chen, S., Patel, R., Lutucuta, S., Nemoto, S., et al. (2004). Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 109, 1284–1291.

    Article  CAS  Google Scholar 

  40. Verschure, D. O., van Eck-Smit, B. L., Somsen, G. A., & Verberne, H. J. (2015). Cardiac sympathetic activity in hypertrophic cardiomyopathy and Tako-tsubo cardiomyopathy. Clinical and Translational Imaging, 3, 379–385.

    Article  Google Scholar 

  41. Wei, B. R., Simpson, R. M., Johann, D. J., Dwyer, J. E., Prieto, D. A., Kumar, M., et al. (2012). Proteomic profiling of H-Ras-G12V induced hypertrophic cardiomyopathy in transgenic mice using comparative LC-MS analysis of thin fresh-frozen tissue sections. Journal of Proteome Research, 11, 1561–1570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi J. Shimada.

Ethics declarations

Conflict of Interest

Dr. Fifer is a consultant to and scientific advisory board member of MyoKardia. The other authors have no conflict of interest related to this article.

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 6091 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, Y.J., Hasegawa, K., Kochav, S.M. et al. Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy. J. of Cardiovasc. Trans. Res. 12, 569–579 (2019). https://doi.org/10.1007/s12265-019-09896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09896-z

Keywords

Navigation