Skip to main content

Advertisement

Log in

Early Wave Reflection and Pulse Wave Velocity Are Associated with Diastolic Dysfunction in Rheumatoid Arthritis

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) impacts arterial and diastolic function. This study examined whether arterial properties can determine diastolic function in RA. In 173 RA patients, arterial function measures including carotid femoral pulse wave velocity (PWV), central systolic and pulse pressure, pulse pressure amplification, and the magnitude and timing of the forward and reflected waves were measured using applanation tonometry. Diastolic function parameters including the ratio of early-to-late transmitral velocity (E/A) and ratio of E to the mean of the lateral and septal wall myocardial tissue lengthening (e’) were measured using echocardiography. The timing of the reflected wave was associated with E/A; PWV was related to E/e’. The timing of the reflected wave, forward wave magnitude, and pulse pressure amplification were associated with impaired relaxation; PWV was related to increased left ventricular (LV) filling pressure. Early wave reflection and PWV are associated with LV-impaired relaxation and increased filling pressure, respectively, in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACEI:

Angiotensin converting enzyme inhibitors

Alx:

Augmentation index

ARB:

Angiotensin receptor blockers

BB:

Beta blockers

CCB:

Calcium channel blockers

cPP:

Central pulse pressure

e’:

The mean of the lateral and septal wall myocardial tissue lengthening

E:

Trans-mitral velocity in the early period of left ventricular diastolic filling

E/A:

Early-to-late transmitral velocity

LV:

Left ventricle

LVMI:

Left ventricular mass indexed to body surface area

Pb:

Backward wave pressure

Pb time:

Time to wave reflection

Pf:

Forward wave pressure

PPamp:

Pulse pressure amplification

PWV:

Pulse wave velocity

RA:

Rheumatoid arthritis

RM:

Reflection magnitude

References

  1. Aslam, F., Bandeali, S. J., Khan, N. A., & Alam, M. (2013). Diastolic dysfunction in rheumatoid arthritis: a meta-analysis and systematic review. Arthritis Care & Research, 65, 534–543.

    Google Scholar 

  2. Nicola, P. J., Crowson, C. S., Maradit-Kremers, H., Ballman, K. V., Roger, V. L., Jacobsen, S. J., et al. (2006). Contribution of congestive heart failure and ischemic heart disease to excess mortality in rheumatoid arthritis. Arthritis & Rheumatology, 54, 60–67.

    Google Scholar 

  3. Mitchell, G. F., Tardif, J. C., Arnold, J. M., Marchiori, G., O’brien, T. X., Dunlap, M. E., et al. (2001). Pulsatile hemodynamics in congestive heart failure. Hypertension, 38, 1433–1439.

    CAS  PubMed  Google Scholar 

  4. Kawaguchi, M., Hay, I., Fetics, B., & Kass, D. A. (2003). Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: Implications for systolic and diastolic reserve limitations. Circulation, 107, 714–720.

    PubMed  Google Scholar 

  5. Desai, A. S., Mitchell, G. F., Fang, J. C., & Creager, M. A. (2009). Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction. Journal of Cardiac Failure, 15, 658–664.

    PubMed  Google Scholar 

  6. Kitzman, D. W., Herrington, D. M., Brubaker, P. H., Moore, J. B., Eggebeen, J., & Haykowsky, M. J. (2013). Carotid arterial stiffness and its relationship to exercise intolerance in older patients with heart failure and preserved ejection fraction. Hypertension, 61, 112–119.

    CAS  PubMed  Google Scholar 

  7. Tsao, C. W., Lyass, A., Larson, M. G., Levy, D., Hamburg, N. M., Vita, J. A., et al. (2015). Relation of central arterial stiffness to incident heart failure in the community. Journal of the American Heart Association, 4, e002189.

    PubMed  PubMed Central  Google Scholar 

  8. Peterson, V. R., Woodiwiss, A. J., Libhaber, C. D., Raymond, A., Sareli, P., & Norton, G. R. (2016). Cardiac diastolic dysfunction is associated with aortic wave reflection, but not stiffness in a predominantly young-to-middle-aged community sample. American Journal of Hypertension, 29, 1148–1157.

    PubMed  Google Scholar 

  9. Kaess, B. M., Rong, J., Larson, M. G., Hamburg, N. M., Vite, J. A., Cheng, S., et al. (2016). Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the Framingham Heart Study. Journal of the American Heart Association, 5, e002693.

    PubMed  PubMed Central  Google Scholar 

  10. Wan, S. H., Vogel, M. W., & Chen, H. H. (2014). Pre-clinical diastolic dysfunction. Journal of the American College of Cardiology, 63, 407–416.

    PubMed  Google Scholar 

  11. Cooper, L. L., Rong, J., Benjamin, E. J., Larson, M. G., Levy, D., Vita, J. A., et al. (2015). Components of hemodynamic load and cardiovascular events: the Framingham Heart Study. Circulation, 131, 354–361.

    PubMed  Google Scholar 

  12. Chirinos, J. A., Kips, J. G., Jacobs, D. R., Jr., Brumback, L., Duprez, D. A., Kronmal, R., et al. (2012). Arterial wave reflections and incident cardiovascular events and heart failure: MESA (multiethnic study of atherosclerosis). Journal of the American College of Cardiology, 60, 2170–2177.

    PubMed  PubMed Central  Google Scholar 

  13. Wang, K.-L., Cheng, H.-M., Sung, S.-H., Chuang, S.-Y., Li, C. H., Spurgeon, H. A., et al. (2010). Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension, 55, 799–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. Journal of the Am College of Cardiology, 55, 1318–1327.

    Google Scholar 

  15. Vlachopoulos, C., Aznaouridis, K., O’Rourke, M. F., Safar, M. E., Baou, K., & Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. European Heart Journal, 31, 1865–1871.

  16. Ben-Shlomo, Y., Spears, M., Boustred, C., May, M., Anderson, S. G., Benjamin, E. J., et al. (2014). Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. Journal of the American College of Cardiology, 63, 636–646.

    PubMed  Google Scholar 

  17. Weber, T., Wassertheurer, S., Rammer, M., Haiden, A., Hametner, B., & Eber, B. (2012). Wave reflection, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension, 60, 534–541.

    CAS  PubMed  Google Scholar 

  18. Sibiya, M. J., Woodiwiss, A. J., Booysen, H. L., Raymond, A., Millen, A. M., Maseko, M. J., et al. (2015). Reflected rather than forward wave pressures account for brachial pressure-independent relations between aortic pressure and end-organ changes in an African community. Journal of Hypertension, 33, 2083–2090.

    CAS  PubMed  Google Scholar 

  19. Zamani, P., Bluemke, D. A., Jacobs, D. R., Duprez, D. A., Kronmal, R., Lilly, S. M., et al. (2015). Resistive and pulsatile arterial load as predictors of left ventricular mass and geometry. The multiethnic study of atherosclerosis. Hypertension, 65, 85–92.

    CAS  PubMed  Google Scholar 

  20. Avolio, A. P., Van Bortel, L. M., Boutouyrie, P., Cockcroft, J. R., McEniery, C. M., Protogerou, A. D., et al. (2009). Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension, 54, 375–583.

    CAS  PubMed  Google Scholar 

  21. Phan, T. S., Li, J. K., Segers, P., & Chirinos, J. A. (2016). Misinterpretation of the determinants of elevated forward wave amplitude inflates the role of the proximal aorta. Journal of the American Heart Association, 5, e003069.

    PubMed  PubMed Central  Google Scholar 

  22. Chirinos, J. A., Segers, P., Gillebert, T. C., Gupta, A. K., De Buyzere, M. L., De Bacquer, D., et al. (2012). Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension, 60, 64–70.

    CAS  PubMed  Google Scholar 

  23. Bell, V., Sigurdsson, S., Westenberg, J. J. M., Gotal, J. D., Torjesen, A. A., Aspelund, T., et al. (2015). Relations between aortic stiffness and left ventricular structure and function in older participants in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Circulation: Cardiovascular Imaging, 8, e003039.

    Google Scholar 

  24. Bell, V., McCabe, E. L., Larson, M. G., Rong, J., Merz, A. A., Osypiuk, E., et al. (2017). Relations between aortic stiffness and left ventricular mechanical function in the community. Journal of thee American Heart Association, 6, e004903.

    Google Scholar 

  25. Ambrosino, P., Tasso, M., Lupoli, R., Di Minno, A., Baldassarre, D., Tremoli, E., et al. (2015). Non-invasive assessment of arterial stiffness in patients with rheumatoid arthritis: a systematic review and meta-analysis of literature studies. Annals of Medicine, 47, 457–467.

    PubMed  Google Scholar 

  26. Gonzalez-Juanatey, C., Testa, A., Garcia-Castelo, A., Garcia-Porrua, C., Llorca, J., Ollier, W. E., et al. (2004). Echocardiographic and Doppler findings in long-term treated rheumatoid arthritis patients without clinically evident cardiovascular disease. Seminars in Arthritis & Rheumatism, 33, 231–238.

    Google Scholar 

  27. Liang, K. P., Myasoedova, E., Crowson, C. S., Davis, J. M., Roger, V. L., Karon, B. L., et al. (2010). Increased prevalence of diastolic dysfunction in rheumatoid arthritis. Annals of Rheumatic Diseases, 69, 1665–1670.

    Google Scholar 

  28. Borlaug, B. A., & Paulus, W. J. (2011). Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. European Heart Journal, 32, 670–679.

    PubMed  Google Scholar 

  29. Jain, S., Khera, R., Corrales–Medina, V. F., Townsend, R. R., & Chirinos, J. A. (2014). Inflammation and arterial stiffness in humans. Atherosclerosis, 237, 381–390.

    CAS  PubMed  Google Scholar 

  30. Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62, 263–271.

    PubMed  Google Scholar 

  31. Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham, C. O., III, et al. (2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against rheumatism collaborative initiative. Arthritis and Rheumatism, 62, 2569–2581.

    PubMed  Google Scholar 

  32. Gunter, S., Robinson, C., Norton, G. R., Woodiwiss, A. J., Tsang, L., Dessein, P. H., et al. (2017). Cardiovascular risk factors and disease characteristics are consistently associated with arterial function in rheumatoid arthritis. Journal of Rheumatology, 44, 1125–1133.

    PubMed  Google Scholar 

  33. Mokotedi, L., Gunter, S., Robinson, C., Norton, G. R., Woodiwiss, A. J., Tsang, L., et al. (2017). The impact of different classification criteria sets on the estimated prevalence and associated risk factors of diastolic dysfunction in rheumatoid arthritis. International Journal of Rheumatology, 2017, 2323410.

    PubMed  PubMed Central  Google Scholar 

  34. Westerhof, B. E., Guelen, I., Westerhof, N., Karemaker, J. M., & Avolio, A. (2006). Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension, 48, 595–601.

    CAS  PubMed  Google Scholar 

  35. Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal of Cardiovascular Imaging, 16, 233–271.

    Google Scholar 

  36. Teichholz, L. E., Kreulen, T., Herman, M. V., & Gorlin, R. (1976). Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence or absence of asynergy. American Journal of Cardiology, 37, 7–11.

    CAS  PubMed  Google Scholar 

  37. Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., Dokainish, H., Edvardsen, T., et al. (2016). Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal of Cardiovascular Imaging, 17, 1321–1360.

    Google Scholar 

  38. Mitter, S. S., Shah, S. J., & Thomas, J. D. (2017). A test in context: E/A and E/e′ to assess diastolic dysfunction and LV filling pressure. Journal of the American College of Cardiology, 69, 1451–1464.

    PubMed  Google Scholar 

  39. Redfield, M. M., Jacobsen, S. J., Burnett, J. C., Mahoney, D. W., Bailey, K. R., & Rodeheffer, R. J. (2003). Burden of systolic and diastolic ventricular dysfunction in the community. Journal of the American Medical Association, 289, 194–202.

    PubMed  Google Scholar 

  40. Williams, B., Mancia, G., Spiering, W., Rosei, E. A., Azizi, M., Williams, B., et al. (2018). 2018 ESC/ESH guidelines for the management of arterial hypertension. European Heart Journal, 39, 3021–3104.

    PubMed  Google Scholar 

  41. Gunter, S., Robinson, C., Woodiwiss, A. J., Norton, G. R., Hsu, H. C., Solomon, A., et al. (2018). Arterial wave reflection and subclinical atherosclerosis in rheumatoid arthritis. Clinical & Experimental Rheumatology, 36, 412–420.

    Google Scholar 

  42. Dart, A. M., & Kingwell, B. A. (2001). Pulse pressure—a review of mechanisms and clinical relevance. Journal of the American College of Cardiology, 37, 975–984.

    CAS  PubMed  Google Scholar 

  43. Tsimploulis, A., Lam, P. H., Arundel, C., Singh, S. N., Morgan, C. J., Faselis, C., et al. (2018). Systolic blood pressure and outcomes in patients with heart failure with preserved ejection fraction. JAMA Cardiology, 3, 288–297.

    PubMed  PubMed Central  Google Scholar 

  44. Rasmussen-Torvik, L. J., Colangelo, L. A., Lima, J. A., Jacobs, D. R., Rodriguez, C. J., Gidding, S. S., et al. (2017). Prevalence and predictors of diastolic dysfunction according to different classification criteria: the coronary artery risk development in young in adults study. American Journal of Epidemiology, 185, 1221–1227.

    PubMed  PubMed Central  Google Scholar 

  45. Dulai, R., Perry, M., Twycross-Lewis, R., Morrissey, D., Atzeni, F., & Greenwald, S. (2012). The effect of tumor necrosis factor-α antagonists on arterial stiffness in rheumatoid arthritis: a literature review. Seminars in Arthritis and Rheumatism, 42, 1–8.

    CAS  PubMed  Google Scholar 

  46. Dudenbostel, T., & Glasser, S. P. (2012). Effects of antihypertensive drugs on arterial stiffness. Cardiology in Review, 20, 259–263.

    PubMed  Google Scholar 

  47. Agca, R., Heslinga, S. C., Rollefstad, S., Heslinga, M., McInnes, I. B., Peters, M. J., et al. (2017). EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Annals of the Rheumatic Diseases, 76, 17–28.

    CAS  PubMed  Google Scholar 

  48. Kips, J. G., Rietschel, E. R., De Buyzere, M. L., Westerhof, B. E., Gillebert, T. C., Van Bortel, L. M., et al. (2009). Evaluation of noninvasive methods to assess wave reflection and pulse transit time from the pressure waveform alone. Hypertension, 53, 142–149.

    CAS  PubMed  Google Scholar 

  49. Cuomo, F., Roccabianca, S., Dillon-Murphy, D., Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2017). Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS One, 12, e0173177.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the voluntary contribution of the patients in this study.

Funding

Funding for this work was provided by the National Research Foundation (Thuthuka programme) and the University of the Witwatersrand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aletta M. E. Millen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This investigation was approved by the University of the Witwatersrand Human (Medical) Research Ethics Committee (approval number: M06-07-33; protocol number: M120562 renewed as M170592) and was conducted in line with the principles of the Helsinki declaration. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all participants included in the study.

Additional information

Associate Editor Ana Barac oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokotedi, L., Gunter, S., Robinson, C. et al. Early Wave Reflection and Pulse Wave Velocity Are Associated with Diastolic Dysfunction in Rheumatoid Arthritis. J. of Cardiovasc. Trans. Res. 12, 580–590 (2019). https://doi.org/10.1007/s12265-019-09892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09892-3

Keywords

Navigation