Skip to main content
Log in

Right Ventricular Function After Pulmonary Artery Banding: Adaptive Processes Assessed by CMR and Conductance Catheter Measurements in Sheep

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This experimental study describes the adaptive processes of the right ventricular (RV) myocardium after pulmonary artery banding (PAB) evaluated by cine cardiac magnetic resonance (CMR), phase-contrast CMR (PC-CMR), and conductance catheter. Seven sheep were subjected to CMR 3 months after PAB. Conductance catheter measurements were performed before and 3 months after PAB. Four nonoperated, healthy, age-matched animals served as controls. Higher RV masses (p < 0.01), elevated RV end-systolic volumes (p < 0.05), and lower RV ejection fraction (p < 0.01) were observed in the operated group. The time-to-peak pulmonary artery flow was longer in the banding group (p < 0.01). RV maximal pressure and RV end-diastolic pressure correlated with the time-to-peak flow in the pulmonary artery (r = − 0.70 and − 0.69, respectively). In summary, PAB caused RV hypertrophy, increased myocardial contractility, and decreased RV-EF and cardiac output. The time-to-peak pulmonary artery flow correlated with RV pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

RV:

Right ventricle

PA:

Pulmonary artery

PAB:

Pulmonary artery banding

CMR:

Cardiac magnetic resonance

PC-CMR:

Phase-contrast cardiac magnetic resonance

EF:

Ejection fraction

ESV:

End-systolic volume

EDV:

End-diastolic volume

SV:

Stroke volume

RV-Pmax :

RV maximal systolic pressure

RV-EDP:

Right ventricular end-diastolic pressure

RV-ESP:

Right ventricular end-systolic pressure

RV-dP/dtmax :

Right ventricular maximum rate of pressure rise

RV-dP/dtmin :

Right ventricular minimum rate of pressure rise

RV-CO:

Right ventricular cardiac output

RV-EDPVR:

RV end-diastolic pressure-volume relationship

RV-ESPVR:

RV end-systolic pressure-volume relationship

RV-PRSW:

RV preload-recruitable stroke work

SSFP:

Steady-state free precession

ECG:

Electrocardiogram

TVA:

Tricuspid valve annulus

TVA-MD:

Tricuspid valve annulus maximal longitudinal displacement

TVA-Vmax :

Tricuspid valve annulus maximal velocity

TVA-VED :

Tricuspid valve annulus maximal velocity at end diastole

TTP:

Time-to-peak

References

  1. Lacour-Gayet, F., Piot, D., Zoghbi, J., Serraf, A., Gruber, P., Macé, L., Touchot, A., & Planché, C. (2001). Surgical management and indication of left ventriculuar retraining in arterial switch for transposition of the great arteries with intact ventricular septum. European Journal of Cardio-Thoracic Surgery, 20, 824–829.

    Article  CAS  Google Scholar 

  2. Pinho, P., Von Oppell, U. O., Brink, J., & Hewitson, J. (1997). Pulmonary artery banding: Adequacy and long-term outcome. European Journal of Cardio-Thoracic Surgery, 11, 105–111.

    Article  CAS  Google Scholar 

  3. Metton, O., Gaudin, R., Ou, P., Gerelli, S., Mussa, S., Sidi, D., Vouhé, P., & Raisky, O. (2010). Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries. European Journal of Cardio-Thoracic Surgery, 38, 728–734.

    Article  Google Scholar 

  4. Bogaard, H. J., Abe, K., Noordegraaf, A. V., & Voelkel, N. F. (2009). The right ventricle under pressure: Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest, 135, 794–804.

    Article  CAS  Google Scholar 

  5. Rain S, Bos Dda S, Handoko ML, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, Goebel M, Dorfmüller P, Guignabert C, Humbert M, Bogaard HJ, Remedios CD, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS (2014). Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart https://doi.org/10.1161/JAHA.113.000716.

  6. Rain S, Andersen S, Najafi A, Gammelgaard Schultz J, da Silva Goncalves Bos D, Handoko ML, Bogaard HJ, Vonk-Noordegraaf A, Andersen A, van der Velden J, Ottenheijm CA, de Man FS (2016). Right ventricular myocardial stiffness in experimental pulmonary arterial hypertension: Relative contribution of fibrosis and myofibril stiffness. Circulation Heart failure https://doi.org/10.1161/CIRCHEARTFAILURE.115.002636.

  7. Noly, P. E., Haddad, F., Arthur-Ataam, J., Langer, N., Dorfmüller, P., Loisel, F., Guihaire, J., Decante, B., Lamrani, L., Fadel, E., & Mercier, O. (2017). The importance of capillary density-stroke work mismatch for right ventricular adaptation to chronic pressure overload. The Journal of Thoracic and Cardiovascular Surgery, 154, 2070–2079.

    Article  Google Scholar 

  8. Maughan, W. L., Sunagawa, K., & Sagawa, K. (1987). Ventricular systolic interdependence: Volume elastance model in isolated canine hearts. The American Journal of Physiology, 253, H1381–H1390.

    CAS  PubMed  Google Scholar 

  9. Borgdorff, M. A. J., Dickinson, M. G., Berger, R. M. P., & Bartelds, B. (2015). Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Failure Reviews, 20, 475–491.

    Article  Google Scholar 

  10. Burkhoff, D., Mirsky, I., & Suga, H. (2005). Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: A guide for clinical, translational, and basic researchers. American Journal of Physiology. Heart and Circulatory Physiology, 289, H501–H512.

    Article  CAS  Google Scholar 

  11. Faber, M. J., Dalinghaus, M., Lankhuizen, I. M., Steendijk, P., Hop, W. C., Schoemaker, R. G., Duncker, D. J., Lamers, J. M., & Helbing, W. A. (2006). Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1580–H1586.

    Article  CAS  Google Scholar 

  12. Vogel, M. (1999). The optimal method with which to assess right ventricular function. Cardiology in the Young, 9, 547–548.

    Article  CAS  Google Scholar 

  13. Schmitt B, Steendijk P, Lunze K, Ovroutski S, Falkenberg J, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2009). Integrated assessment of diastolic and systolic ventricular function using diagnostic cardiac magnetic resonance catheterization: Validation in pigs and application in a clinical pilot study. JACC Cardiovasc Imaging 2:1271–1281.

    PubMed  Google Scholar 

  14. Yu, C. M., Sanderson, J. E., Marvick, T. H., & Oh, J. K. (2007). Tissue Doppler imaging a new prognosticator for cardiovascular disease. JACC, 49, 1903–1934.

    Article  Google Scholar 

  15. Hollingsworth, K. G., Hodgson, T., MacGowan, G. A., Blamire, A. M., & Newton, J. L. (2011). Impaired cardiac function in chronic fatigue syndrome measured using magnetic resonance cardiac tagging. Journal of Internal Medicine, 271, 264–278.

    Article  Google Scholar 

  16. Jing, L., Pulenthiran, A., Nevius, C. D., Mejia-Spiegeler, A., Suever, J. D., Wehner, G. J., Kirchner, H. L., Haggerty, C. M., & Fornwalt, B. K. (2017). Impaired right ventricular contractile function in childhood obesity and its association with right and left ventricular changes: A cine DENSE cardiac magnetic resonance study. Journal of Cardiovascular Magnetic Resonance. https://doi.org/10.1186/s12968-017-0363-5.

  17. Le Bret, E., Bonhoeffer, P., Folliguet, T. A., Sidi, D., Laborde, F., de Leval, M. R., & Vouhé, P. (2001). A new percutaneously adjustable, thoracoscopically implantable, pulmonary artery banding: An experimental study. The Annals of Thoracic Surgery, 72, 1358–1361.

    Article  Google Scholar 

  18. Alam, M., Wardell, J., Andersson, E., Samad, B. A., & Nordlander, R. (2000). Right ventricular function in patients with first inferior myocardial infarction: Assessment by tricuspid annular motion and tricuspid annular velocity. American Heart Journal, 139, 710–715.

    Article  CAS  Google Scholar 

  19. Saba, S. G., Chung, S., Bhagavatula, S., Donnino, R., Srichai, M. B., Saric, M., Katz, S. D., & Axel, L. (2014). Novel and practical cardiovascular magnetic resonance method to quantify mitral annular excursion and recoil applied to hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 16, 35–43.

    Article  Google Scholar 

  20. Wu, V., Chyou, J. Y., Chung, S., Bhagavatula, S., & Axel, L. (2014). Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: Comparison with tissue Doppler imaging. Journal of Cardiovascular Magnetic Resonance, 16, 71–84.

    Article  Google Scholar 

  21. Leeuwenburgh, B. P., Steendijk, P., Helbing, W. A., & Baan, J. (2002). Indexes of diastolic RV function: Load dependence and changes after chronic RV pressure overload in lambs. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1350–H1358.

    Article  CAS  Google Scholar 

  22. Leeuwenburgh, B. P. J., Helbing, W. A., Steendijk, P., Schoof, P. H., & Baan, J. (2001). Biventricular systolic function in young lamb subject to chronic systemic right ventricular pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 281, H2697–H2704.

    Article  CAS  Google Scholar 

  23. de Vroomen, M., Cardozo, R. H., Steendijk, P., van Bel, F., & Baan, J. (2000). Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. American Journal of Physiology. Heart and Circulatory Physiology, 278, H100–H105.

    Article  Google Scholar 

  24. Fesler, P., Pagnamenta, A., Rondelet, B., Kerbaul, F., & Naeije, R. (2000). Effects of sildenafil on hypoxic pulmonary vascular function in dogs. Journal of Applied Physiology, 101, 1085–1090.

    Article  Google Scholar 

  25. Rex, S., Missant, C., Segers, P., Roussaint, R., & Wourters, P. P. (2008). Epoprostenol treatment of acute pulmonary hypertension is associated with a paradoxical decrease in right ventricular contractility. Intensive Care Medicine, 34, 179–189.

    Article  CAS  Google Scholar 

  26. Boehm, M., Lawrie, A., Wilhelm, J., Ghofrani, H. A., Grimminger, F., Weissmann, N., Seeger, W., Schermuly, R. T., & Kojonazarov, B. (2017). Maintained right ventricular pressure overload induces ventricular-arterial decoupling in mice. Experimental Physiology, 102, 180–189.

    Article  Google Scholar 

  27. Ito, S., McElhinney, A. R., Bhatla, P., Chung, S., & Axel, L. (2015). Preliminary assessment of tricuspid valve annular velocity parameters by cardiac magnetic resonance imaging in adults with a volume-overloaded right ventricle: Comparison of unrepaired atrial septal defect and repaired tetralogy of Fallot. Pediatric Cardiology, 36, 1294–1300.

    Article  Google Scholar 

  28. Borgdorff, M. A., Bartelds, B., Dickinson, M. G., Boersma, B., Weij, M., Zandvoort, A., Sillje, H. H., Steendijk, P., de Vroomen, M., & Berger, R. M. (2012). Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. European Journal of Heart Failure, 14, 1067–1074.

    Article  CAS  Google Scholar 

  29. Gaynor, S. L., Maniar, H. S., Bloch, J. B., Steendijk, P., & Moon, M. R. (2005). Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation, 112, I212–I218.

    PubMed  Google Scholar 

  30. Sanz, J., Kuschnir, P., Rius, T., Salguero, R., Sulica, R., Einstein, A. J., Dellegrottaglie, S., Fuster, V., Rajagopalan, S., & Poon, M. (2007). Pulmonary arterial hypertension: Noninvasive detection with phase-contrast MR imaging. Radiology, 243, 70–79.

    Article  Google Scholar 

  31. Abolmaali, N., Seitz, U., Esmaeili, A., Kock, M., Radeloff, D., Ackermann, H., & Vogl, T. J. (2007). Evaluation of a resistance-based model for the quantification of pulmonary arterial hypertension using MR flow measurements. Journal of Magnetic Resonance Imaging, 26, 646–653.

    Article  Google Scholar 

  32. García-Alvarez, A., Fernández-Friera, L., Mirelis, J. G., Sawit, S., Nair, A., Kallman, J., Fuster, V., & Sanz, J. (2011). Non-invasive estimation of pulmonary vascular resistance with cardiac magnetic resonance. European Heart Journal, 32, 2438–2445.

    Article  Google Scholar 

  33. Hoit, B. D., Ball, N., & Walsh, R. A. (1997). Invasive hemodynamics and force-frequency relationships in open- versus closed-chest mice. The American Journal of Physiology, 273, H2528–H2533.

    CAS  PubMed  Google Scholar 

  34. Boltze, J., Förschler, A., Nitzsche, B., Waldmin, D., Hoffmann, A., Boltze, C. M., Dreyer, A. Y., Goldammer, A., Reischauer, A., Härtig, W., Geiger, K. D., Barthel, H., Emmrich, F., & Gille, U. (2008). Permanent middle cerebral artery occlusion in sheep: A novel large animal model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 28, 1951–1964.

    Article  Google Scholar 

  35. Kreitner, K. F., Wirth, G. M., Krummenauer, F., Weber, S., Pitton, M. B., Schneider, J., Mayer, E., & Dueber, C. (2013). Noninvasive assessment of hemodynamics in patients with thromboembolic pulmonary hypertension by high temporal resolution phase-contrast MRI: Correlation with simultaneous invasive pressure recordings. Circulation. Cardiovascular Imaging, 6, 722–729.

    Article  Google Scholar 

  36. Schrijen, F., & Jezkov, J. (1988). Natural variability of pulmonary hemodynamics. European Heart Journal, 9, 19–22.

    Article  Google Scholar 

  37. Kuehne, T., Yilmaz, S., Steendijk, P., Moore, P., Groenink, M., Saaed, M., Weber, O., Higgins, C. B., Ewert, P., Fleck, E., Nagel, E., Schulze-Neick, I., & Lange, P. (2004). Magnetic resonance imaging analysis of right ventricular pressure-volume loops in vivo validation and clinical application in patients with pulmonary hypertension. Circulation, 110, 2010–2016.

    Article  Google Scholar 

Download references

Funding

This research received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Gufler.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the local Animal Care Committee. Animals received humane care in compliance with the Principles of Laboratory Animal Care formulated by the National Society for Medical Research and the Guide for the Care and Use of Laboratory Animals.

Additional information

Associate Editor Ana Barac oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gufler, H., Niefeldt, S., Boltze, J. et al. Right Ventricular Function After Pulmonary Artery Banding: Adaptive Processes Assessed by CMR and Conductance Catheter Measurements in Sheep. J. of Cardiovasc. Trans. Res. 12, 459–466 (2019). https://doi.org/10.1007/s12265-019-09881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09881-6

Keywords

Navigation