Skip to main content

Advertisement

Log in

Induced Pluripotent Stem Cell–Derived Cardiomyocytes from a Patient with MYL2-R58Q-Mediated Apical Hypertrophic Cardiomyopathy Show Hypertrophy, Myofibrillar Disarray, and Calcium Perturbations

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy (HCM), characterized by unexplained left ventricular hypertrophy, is one of the most common heritable cardiovascular diseases. The myosin regulatory light chain (MYL2) mutation R58Q has been associated with severe cardiac hypertrophy and sudden cardiac death (SCD). Herein, we provide the first patient-specific, induced pluripotent stem cell–derived cardiomyocyte (iPSC-CM) model of MYL2-R58Q. The MYL2-R58Q iPSC-CMs were nearly 30% larger than control iPSC-CMs at day 60. The percentage of myofibrillar disarray and cells with irregular beating in MYL2-R58Q iPSC-CMs was significantly higher than that in control cells. MYL2-R58Q iPSC-CMs had significantly decreased peak ΔF/F0 of calcium transients and delayed decay time than controls. Additionally, the L-type Ca2+ channel (LTCC) (ICa,L) density at 0 mV was reduced significantly by 45.3%. Overall, the MYL2-R58Q iPSC-CMs recapitulated the HCM phenotype by exhibiting hypertrophy, myofibrillar disarray, increased irregular beating, decreased [Ca2+]i transients, and unexpectedly a nearly 50% reduction in LTCC peak current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCM:

Hypertrophic cardiomyopathy

MYL2:

Myosin regulatory light chain

SCD:

Sudden cardiac death

iPSC-CM:

Induced pluripotent stem cell–derived cardiomyocyte

LTCC (ICa,L):

L-type Ca2+ channel

MYH7:

Myosin heavy chain 7

MYBPC3:

Cardiac myosin binding protein C

TNNT2:

Cardiac muscle troponin T

SR:

Sarcoplasmic reticulum

CICR:

Calcium-induced calcium release

References

  1. Maron, B. J. (2002). Hypertrophic cardiomyopathy - a systematic review. JAMA-Journal of the American Medical Association, 287(10), 1308–1320.

    Google Scholar 

  2. Ashrafian, H., & Watkins, H. (2007). Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications - Cardiomyopathies: therapeutics based on molecular phenotype. Journal of the American College of Cardiology, 49(12), 1251–1264.

    CAS  PubMed  Google Scholar 

  3. Maron, B. J., et al. (1996). Sudden death in young competitive athletes - clinical, demographic, and pathological profiles. JAMA-Journal of the American Medical Association, 276(3), 199–204.

    CAS  Google Scholar 

  4. Jarcho, J. A., et al. (1989). Mapping a gene for familial hypertrophic cardiomyopathy to chromosome-14q1. New England Journal of Medicine., 321(20), 1372–1378(2014).

    CAS  PubMed  Google Scholar 

  5. Maron, B. J., et al. (2014). Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. Journal of the American College of Cardiology, 64(11), 1188–1188.

    Google Scholar 

  6. Ojala, M., et al. (2016). Mutation-specific phenotypes in hiPSC-derived cardiomyocytes carrying either myosin-binding protein C or alpha-tropomyosin mutation for hypertrophic cardiomyopathy. Stem Cells International, 2016, 1684792.

    PubMed  Google Scholar 

  7. Alcalai, R., Seidman, J. G., & Seidman, C. E. (2008). Genetic basis of hypertrophic cardiomyopathy: From bench to the clinics. Journal of Cardiovascular Electrophysiology, 19(1), 104–110.

    PubMed  Google Scholar 

  8. Arad, M., Seidman, J. G., & Seidman, C. E. (2002). Phenotypic diversity in hypertrophic cardiomyopathy. Human Molecular Genetics, 11(20), 2499–2506.

    CAS  PubMed  Google Scholar 

  9. Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33(4), 655–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Morita, H., et al. (2008). Shared genetic causes of cardiac hypertrophy in children and adults. New England Journal of Medicine, 358(18), 1899–1908.

    CAS  PubMed  Google Scholar 

  11. Olsson, M. C., Patel, J. R., Fitzsimons, D. P., Walker, J. W., & Moss, R. L. (2004). Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2712–H2718.

    CAS  PubMed  Google Scholar 

  12. Rayment, I., et al. (1993). Structure of the actin-myosin complex and its implications for muscle-contraction. Science, 261(5117), 58–65.

    CAS  PubMed  Google Scholar 

  13. Flavigny, J., et al. (1998). Identification of two novel mutations in the ventricular regulatory myosin light chain gene (MYL2) associated with familial and classical forms of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 76(3–4), 208–214.

    CAS  PubMed  Google Scholar 

  14. Huang, W. R., et al. (2016). Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain. Archives of Biochemistry and Biophysics, 601(121-132), 121–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lan, F., et al. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12(1), 101–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mettikolla, P., et al. (2011). Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. Journal of Theoretical Biology, 284(1), 71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham, T. P., et al. (2009). Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice. Cardiovascular Research, 82(1), 84–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y., et al. (2006). Prolonged Ca2+ and force transients in myosin RLC transgenic mouse fibers expressing malignant and benign FHC mutations. Journal of Molecular Biology, 361(2), 286–299.

    CAS  PubMed  Google Scholar 

  19. Grey, C., Mery, A., & Puceat, M. (2005). Fine-tuning in Ca2+ homeostasis underlies progression of cardiomyopathy in myocytes derived from genetically modified embryonic stem cells. Human Molecular Genetics, 14(10), 1367–1377.

    CAS  PubMed  Google Scholar 

  20. Weyhrauch, D. L., et al. (2016). Whole exome sequencing and heterologous cellular electrophysiology studies elucidate a novel loss-of-function mutation in the CACNA1A-encoded neuronal P/Q-type calcium channel in a child with congenital hypotonia and developmental delay. Pediatric Neurology, 55, 46–51.

    PubMed  Google Scholar 

  21. Hu, D., et al. (2010). Dual variation in SCN5A and CACNB2b underlies the development of cardiac conduction disease without Brugada syndrome. Pace-Pacing and Clinical Electrophysiology, 33(3), 274–285.

    Google Scholar 

  22. McKenna, W. J., Stewart, J. T., Nihoyannopoulos, P., McGinty, F., & Davies, M. J. (1990). Hypertrophic cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. British Heart Journal, 63(5), 287–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Varnava, A. M., et al. (2001). Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation, 104(12), 1380–1384.

    CAS  PubMed  Google Scholar 

  24. Becker, J. R., et al. (2011). Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Disease Models & Mechanisms, 4(3), 400–410.

    CAS  Google Scholar 

  25. GeisterferLowrance, A. A. T., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272(5262), 731–734.

    CAS  Google Scholar 

  26. Tsoutsman, T., et al. (2008). Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation, 117(14), 1820–1831.

    PubMed  Google Scholar 

  27. Kazmierczak, K., et al. (2013). Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 305(4), H575–H589.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, L., et al. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104(2), 258–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka, A., et al. (2014). Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. Journal of the American Heart Association, 3(6).

  30. Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70, 23–49.

    CAS  PubMed  Google Scholar 

  31. Murphy, S. L., et al. (2016). Evaluation of the Mayo Clinic phenotype-based genotype predictor score in patients with clinically diagnosed hypertrophic cardiomyopathy. Journal of Cardiovascular Translational Research, 9(2), 153–161.

    PubMed  PubMed Central  Google Scholar 

  32. Chen, J., et al. (1998). Selective requirement of myosin light chain 2v in embryonic heart function. The Journal of Biological Chemistry, 273(2), 1252–1256.

    CAS  PubMed  Google Scholar 

  33. Duggal, D., et al. (2015). Effect of a myosin regulatory light chain mutation K104E on actin-myosin interactions. American Journal of Physiology-Heart and Circulatory Physiology, 308(10), H1248–H1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenberg, M. J., et al. (2009). Regulatory light chain mutations associated with cardiomyopathy affect myosin mechanics and kinetics. Journal of Molecular and Cellular Cardiology, 46(1), 108–115.

    CAS  PubMed  Google Scholar 

  35. McConnell, B. K., et al. (2001). Comparison of two murine models of familial hypertrophic cardiomyopathy. Circulation Research, 88(4), 383–389.

    CAS  PubMed  Google Scholar 

  36. Frey, N., et al. (2000). Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovascular Research, 47(2), 254–264.

    CAS  PubMed  Google Scholar 

  37. Freeman, L. M., Rush, J. E., Stern, J. A., Huggins, G. S., & Maron, M. S. (2017). Feline hypertrophic cardiomyopathy: a spontaneous large animal model of human HCM. Cardiology Research, 8(4), 139–142.

    PubMed  PubMed Central  Google Scholar 

  38. Marian, A. J., et al. (1999). A transgenic rabbit model for human hypertrophic cardiomyopathy. Journal of Clinical Investigation, 104(12), 1683–1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    CAS  PubMed  Google Scholar 

  40. Yu, J. Y., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science., 318(5858), 1917–1920.

    CAS  PubMed  Google Scholar 

  41. Musunuru, K., et al. (2018). Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med., 11(1), e000043.

    PubMed  PubMed Central  Google Scholar 

  42. Varnava, A. M., Elliott, P. M., Sharma, S., McKenna, W. J., & Davies, M. J. (2000). Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart, 84(5), 476–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iida, K., Yutani, C., Imakita, M., & Ishibashi-Ueda, H. (1998). Comparison of percentage area of myocardial fibrosis and disarray in patients with classical form and dilated phase of hypertrophic cardiomyopathy. Journal of Cardiology, 32(3), 173–180.

    CAS  PubMed  Google Scholar 

  44. Sun, N., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4(130).

  45. Irving, M., Lombardi, V., Piazzesi, G., & Ferenczi, M. A. (1992). Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature, 357(6374), 156–158.

    CAS  PubMed  Google Scholar 

  46. Morano, I. (1999). Tuning the human heart molecular motors by myosin light chains. Journal of Molecular Medicine-JMM, 77(7), 544–555.

    CAS  Google Scholar 

  47. Thandroyen, F. T., et al. (1991). Intracellular calcium transients and arrhythmia in isolated heart cells. Circulation Research, 69(3), 810–819.

    CAS  PubMed  Google Scholar 

  48. Lee, K. S., Marban, E., & Tsien, R. W. (1985). Inactivation of calcium channels in mammalian heart-cells - joint dependence on membrane-potential and intracellular calcium. J Physiology-London, 364(Jul), 395–411.

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program (MJA) and the Tsai Family Fund for HCM (SRO, RAN, HVS, and MJA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ackerman.

Ethics declarations

Conflict of Interest

MJA is a consultant for Audentes Therapeutics, Boston Scientific, Gilead Sciences, Invitae, Medtronic, MyoKardia, and St. Jude Medical. MJA and Mayo Clinic have an equity/royalty relationship with AliveCor, Blue Ox Health, and StemoniX but without remuneration thus far. However, none of these entities have contributed to this study in any manner. CK, DJT, DY, HVS, JJM, JMB, RN, SH, and WZ have no conflicts of interest to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study. All experimental protocols for this study were approved by the Mayo Foundation Institutional Review Board and informed consent was obtained for use of patient samples.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Bos, J.M., Ye, D. et al. Induced Pluripotent Stem Cell–Derived Cardiomyocytes from a Patient with MYL2-R58Q-Mediated Apical Hypertrophic Cardiomyopathy Show Hypertrophy, Myofibrillar Disarray, and Calcium Perturbations. J. of Cardiovasc. Trans. Res. 12, 394–403 (2019). https://doi.org/10.1007/s12265-019-09873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09873-6

Keywords

Navigation