Skip to main content
Log in

Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is the most prevalent cause of non-ischemic cardiac failure and the commonest indication for cardiac transplantation. Compelling evidence highlights the pivotal roles of genetic defects in the occurrence of DCM. Nevertheless, the genetic determinants underpinning DCM remain largely obscure. In this study, the coding regions of ISL1, which encodes a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling, were sequenced in 216 unrelated patients with DCM, and a novel heterozygous ISL1 mutation, NM_002202.2: c.631A>T; p.(Lys211*), was identified in a proband. The mutation, which co-segregated with DCM in the family, was absent in 238 unrelated controls, as well as in the Genome Aggregation and the Exome Aggregation Consortium population databases. Functional analyses unveiled that the mutant ISL1 protein lost transcriptional activity alone or in synergy with TBX20 or GATA4, two other transcription factors associated with DCM. These findings indicate ISL1 as a new gene of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCM:

Dilated cardiomyopathy

CHD:

Congenital heart disease

VSD:

Ventricular septal defect

PCR:

Polymerase chain reaction

SD:

Standard deviation

HD:

Homeodomain

TAD:

Transcriptional activation domain

References

  1. Merlo, M., Cannatà, A., Gobbo, M., Stolfo, D., Elliott, P. M., & Sinagra, G. (2018). Evolving concepts in dilated cardiomyopathy. European Journal of Heart Failure, 20, 228–239.

    Article  PubMed  Google Scholar 

  2. Tabish, A. M., Azzimato, V., Alexiadis, A., Buyandelger, B., & Knöll, R. (2017). Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophysical Reviews, 9, 207–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halliday, B. P., Gulati, A., Ali, A., Guha, K., Newsome, S., Arzanauskaite, M., et al. (2017). Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation, 135, 2106–2115.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Halliday, B. P., Cleland, J. G. F., Goldberger, J. J., & Prasad, S. K. (2017). Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation, 136, 215–231.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stolfo, D., Ceschia, N., Zecchin, M., De Luca, A., Gobbo, M., Barbati, G., et al. (2018). Arrhythmic risk stratification in patients with idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 121, 1601–1609.

    Article  PubMed  Google Scholar 

  6. Norum, H. M., Broch, K., Michelsen, A. E., Lunde, I. G., Lekva, T., Abraityte, A., et al. (2017). The notch ligands DLL1 and periostin are associated with symptom severity and diastolic function in dilated cardiomyopathy. Journal of Cardiovascular Translational Research, 10, 401–410.

    Article  PubMed  Google Scholar 

  7. McNally, E. M., & Mestroni, L. (2017). Dilated cardiomyopathy: genetic determinants and mechanisms. Circulation Research, 121, 731–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weintraub, R. G., Semsarian, C., & Macdonald, P. (2017). Dilated cardiomyopathy. Lancet, 390, 400–414.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, Y. Z. J., & Judge, D. P. (2017). The role of genetics in peripartum cardiomyopathy. Journal of Cardiovascular Translational Research, 10, 437–445.

    Article  PubMed  Google Scholar 

  10. Bondue, A., Arbustini, E., Bianco, A., Ciccarelli, M., Dawson, D., De Rosa, M., et al. (2018). Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 114, 1287–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shakeel, M., Irfan, M., & Khan, I. A. (2018). Rare genetic mutations in Pakistani patients with dilated cardiomyopathy. Gene, 673, 134–139.

    Article  CAS  PubMed  Google Scholar 

  12. Iuso, A., Wiersma, M., Schüller, H. J., Pode-Shakked, B., Marek-Yagel, D., Grigat, M., et al. (2018). Mutations in PPCS, encoding phosphopantothenoylcysteine synthetase, cause autosomal-recessive dilated cardiomyopathy. American Journal of Human Genetics, 102, 1018–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nozari, A., Aghaei-Moghadam, E., Zeinaloo, A., Mollazadeh, R., Majnoon, M. T., Alavi, A., et al. (2018). A novel splicing variant in FLNC gene responsible for a highly penetrant familial dilated cardiomyopathy in an extended Iranian family. Gene, 659, 160–167.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, Y. M., Wang, J., Xu, Y. J., Wang, X. H., Yuan, F., Liu, H., et al. (2018). ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart and Vessels, 33, 722–732.

    Article  PubMed  Google Scholar 

  15. Barefield, D. Y., Puckelwartz, M. J., Kim, E. Y., Wilsbacher, L. D., Vo, A. H., Waters, E. A., et al. (2017). Experimental modeling supports a role for MyBP-HL as a novel myofilament component in arrhythmia and dilated cardiomyopathy. Circulation, 136, 1477–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tayal, U., Newsome, S., Buchan, R., Whiffin, N., Walsh, R., Barton, P. J., et al. (2017). Truncating variants in titin independently predict early arrhythmias in patients with dilated cardiomyopathy. Journal of the American College of Cardiology, 68, 2466–2468.

    Article  Google Scholar 

  17. Long, P. A., Theis, J. L., Shih, Y. H., Maleszewski, J. J., Abell Aleff, P. C., Evans, J. M., et al. (2017). Recessive TAF1A mutations reveal ribosomopathy in siblings with end-stage pediatric dilated cardiomyopathy. Human Molecular Genetics, 26, 2874–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, S., Smith, L. L., Padilla-Lopez, S. R., Guida, B. S., Blume, E., Shi, J., et al. (2017). Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death. Human Molecular Genetics, 26, 3545–3552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, C., Li, C., Zhou, B., Sun, H., Koullourou, V., Holt, I., et al. (2017). Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Human Molecular Genetics, 26, 2258–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jansweijer, J. A., Nieuwhof, K., Russo, F., Hoorntje, E. T., Jongbloed, J. D., Lekanne Deprez, R. H., et al. (2017). Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. European Journal of Heart Failure, 19, 512–521.

    Article  CAS  PubMed  Google Scholar 

  21. Le Dour, C., Macquart, C., Sera, F., Homma, S., Bonne, G., Morrow, J. P., et al. (2017). Decreased WNT/β-catenin signaling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin A/C gene. Human Molecular Genetics, 26, 333–343.

    PubMed  Google Scholar 

  22. Dal Ferro, M., Stolfo, D., Altinier, A., Gigli, M., Perrieri, M., Ramani, F., et al. (2017). Association between mutation status and left ventricular reverse remodeling in dilated cardiomyopathy. Heart, 103, 1704–1710.

    Article  CAS  PubMed  Google Scholar 

  23. Janin, A., N'Guyen, K., Habib, G., Dauphin, C., Chanavat, V., Bouvagnet, P., et al. (2017). Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clinical Genetics, 92, 616–623.

    Article  CAS  PubMed  Google Scholar 

  24. Robyns, T., Kuiperi, C., Breckpot, J., Devriendt, K., Souche, E., Van Cleemput, J., et al. (2017). Repeat genetic testing with targeted capture sequencing in primary arrhythmia syndrome and cardiomyopathy. European Journal of Human Genetics, 25, 1313–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petropoulou, E., Soltani, M., Firoozabadi, A. D., Namayandeh, S. M., Crockford, J., Maroofian, R., et al. (2017). Digenic inheritance of mutations in the cardiac troponin (TNNT2) and cardiac beta myosin heavy chain (MYH7) as the cause of severe dilated cardiomyopathy. European Journal of Medical Genetics, 60, 485–488.

    Article  PubMed  Google Scholar 

  26. Zaidi, S., & Brueckner, M. (2017). Genetics and genomics of congenital heart disease. Circulation Research, 120, 923–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blue, G. M., Kirk, E. P., Giannoulatou, E., Sholler, G. F., Dunwoodie, S. L., Harvey, R. P., et al. (2017). Advances in the genetics of congenital heart disease: a clinician's guide. Journal of the American College of Cardiology, 69, 859–870.

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. J., & Yang, Y. Q. (2017). An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Review of Molecular Diagnostics, 17, 393–401.

    Article  CAS  PubMed  Google Scholar 

  29. Li, R. G., Li, L., Qiu, X. B., Yuan, F., Xu, L., Li, X., et al. (2013). GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 439, 591–596.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X. L., Dai, N., Tang, K., Chen, Y. Q., Chen, W., Wang, J., et al. (2015). GATA5 loss-of-function mutation in familial dilated cardiomyopathy. International Journal of Molecular Medicine, 35, 763–770.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, L., Zhao, L., Yuan, F., Jiang, W. F., Liu, H., Li, R. G., et al. (2014). GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. International Journal of Molecular Medicine, 34, 1315–1322.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, X. L., Qiu, X. B., Yuan, F., Wang, J., Zhao, C. M., Li, R. G., et al. (2015). TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 459, 166–171.

    Article  CAS  PubMed  Google Scholar 

  33. Kirk, E. P., Sunde, M., Costa, M. W., Rankin, S. A., Wolstein, O., Castro, M. L., et al. (2007). Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. American Journal of Human Genetics, 81, 280–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa, M. W., Guo, G., Wolstein, O., Vale, M., Castro, M. L., Wang, L., et al. (2013). Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circulation Cardiovascular Genetics, 6, 238–247.

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, F., Qiu, Z. H., Wang, X. H., Sun, Y. M., Wang, J., Li, R. G., et al. (2018). MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 56, 502–511.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, Y. M., Dai, X. Y., Qiu, X. B., Yuan, F., Li, R. G., Xu, Y. J., et al. (2016). HAND1 loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 54, 1161–1167.

    Article  CAS  PubMed  Google Scholar 

  37. Qiu, X. B., Qu, X. K., Li, R. G., Liu, H., Xu, Y. J., Zhang, M., et al. (2017). CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 55, 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  38. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5, 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.

    Article  CAS  PubMed  Google Scholar 

  41. Bu, L., Jiang, X., Martin-Puig, S., Caron, L., Zhu, S., Shao, Y., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460, 113–117.

    Article  CAS  PubMed  Google Scholar 

  42. Osoegawa, K., Schultz, K., Yun, K., Mohammed, N., Shaw, G. M., & Lammer, E. J. (2014). Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries. Molecular Genetics and Genomic Medicine, 2, 341–351.

    Article  CAS  PubMed  Google Scholar 

  43. Takeuchi, J. K., Mileikovskaia, M., Koshiba-Takeuchi, K., Heidt, A. B., Mori, A. D., Arruda, E. P., et al. (2005). Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development, 132, 2463–2474.

    Article  CAS  PubMed  Google Scholar 

  44. Stadiotti, I., Catto, V., Casella, M., Tondo, C., Pompilio, G., & Sommariva, E. (2017). Arrhythmogenic cardiomyopathy: the guilty party in adipogenesis. Journal of Cardiovascular Translational Research, 10, 446–454.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, M., Chen, J., Si, D., Zheng, Y., Jiao, H., Feng, Z., et al. (2014). Whole exome sequencing identifies a novel EMD mutation in a Chinese family with dilated cardiomyopathy. BMC Medical Genetics, 15, 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular pathology. Genetics in Medicine, 17, 405–424.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M., & Black, B. L. (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development, 131, 3931–3942.

    Article  CAS  PubMed  Google Scholar 

  48. Brown, C. O., 3rd, Chi, X., Garcia-Gras, E., Shirai, M., Feng, X. H., & Schwartz, R. J. (2004). The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. The Journal of Biological Chemistry, 279, 10659–10669.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, C. M., Sun, B., Song, H. M., Wang, J., Xu, W. J., Jiang, J. F., et al. (2016). TBX20 loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 54, 325–332.

    Article  CAS  PubMed  Google Scholar 

  50. Friedrich, F. W., Dilanian, G., Khattar, P., Juhr, D., Gueneau, L., Charron, P., et al. (2013). A novel genetic variant in the transcription factor Islet-1 exerts gain of function on myocyte enhancer factor 2C promoter activity. European Journal of Heart Failure, 15, 267–276.

    Article  CAS  PubMed  Google Scholar 

  51. Moretti, A., Bellin, M., Jung, C. B., Thies, T. M., Takashima, Y., Bernshausen, A., et al. (2010). Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. Federation of American Societies for Experimental Biology Journal, 24, 700–711.

    Article  CAS  PubMed  Google Scholar 

  52. Liang, X., Zhang, Q., Cattaneo, P., Zhuang, S., Gong, X., Spann, N. J., et al. (2015). Transcription factor ISL1 is essential for pacemaker development and function. The Journal of Clinical Investigation, 125, 3256–3268.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Genead, R., Danielsson, C., Andersson, A. B., Corbascio, M., Franco-Cereceda, A., Sylven, C., et al. (2010). Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells and Development, 19, 1601–1615.

    Article  CAS  PubMed  Google Scholar 

  54. Li, Y., Tian, S., Lei, I., Liu, L., Ma, P., & Wang, Z. (2017). Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice. American Journal of Translational Research, 9, 1530–1542.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, L., Meier, E. M., Tian, S., Lei, I., Liu, L., Xian, S., et al. (2017). Transplantation of Isl1+ cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Research and Therapy, 8, 230.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, H., Xu, Y. J., Li, R. G., Wang, Z. S., Zhang, M., Qu, X. K., et al. (2018). HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. European Journal of Medical Genetics. https://doi.org/10.1016/j.ejmg.2018.09.007.

  57. Stevens, K. N., Hakonarson, H., Kim, C. E., Doevendans, P. A., Koeleman, B. P., Mital, S., et al. (2010). Common variation in ISL1 confers genetic susceptibility for human congenital heart disease. PLoS One, 5, e10855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the study subjects for their participation in the study.

Funding

This work was financially supported by the grants from the National Natural Science Foundation of China (No. 81470372), the Natural Science Foundation of Minhang District, Shanghai, China (No. 2018MHZ072), the Program of the Health and Family Planning Commission of Shanghai, China (No. M20170348), and the Key Project of the Fifth People’s Hospital of Shanghai, Fudan University, China (No. 2018WYZD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Qing Yang.

Ethics declarations

The study was carried out in conformity with the ethical standards established in the 1964 Declaration of Helsinki and its later amendments and was approved by the Medical Ethics Committee of the Fifth People′s Hospital of Shanghai, Fudan University, China. All study participants provided their informed consent prior to the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. No animal studies were carried out by the authors for this article.

Informed Consent

Informed consent was obtained from all study subjects.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YJ., Wang, ZS., Yang, CX. et al. Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J. of Cardiovasc. Trans. Res. 12, 257–267 (2019). https://doi.org/10.1007/s12265-018-9851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9851-8

Keywords

Navigation