Skip to main content
Log in

Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are small-sized membrane-surrounded structures released from cells into the blood, which play important roles in regulating various biological processes. However, the role of EVs in Doxorubicin (DOX)-induced cardiomyocytes senescence remains elusive. In this study, we found that human serum EVs inhibited DOX-induced senescence in H9C2 cells, which was abolished by miR-34a mimic. Our study also proved that miR-34a mediated DOX-induced H9C2 cell senescence by targeting phosphatase 1 nuclear targeting subunit (PNUTS). In addition to the downregulation of miR-34a, EVs could upregulate the expression of PNUTS. Moreover, the inhibitory effect of serum EVs on DOX-induced H9C2 cell senescence was also impeded by PNUTS siRNA. In conclusion, our study suggests that serum EVs retard H9C2 cell senescence through the miR-34a/PNUTS pathway, providing a potential therapy for cardiac aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., et al. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120(4), 701–712.

    Article  CAS  PubMed  Google Scholar 

  2. Angelini, F., Ionta, V., Rossi, F., Pagano, F., Chimenti, I., Messina, E., et al. (2016). Exosomes isolation protocols: facts and artifacts for cardiac regeneration. Frontiers in Bioscience (Scholar Edition), 8, 303–311.

    Article  Google Scholar 

  3. Schageman, J., Zeringer, E., Li, M., Barta, T., Lea, K., Gu, J., et al. (2013). The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Research International, 2013, 253957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215.

    PubMed  Google Scholar 

  5. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.

    Article  CAS  PubMed  Google Scholar 

  6. Song, J., Chen, X., Wang, M., Xing, Y., Zheng, Z., & Hu, S. (2014). Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 4, 7583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1). https://doi.org/10.1161/JAHA.115.002856.

  9. Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., et al. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548(7665), 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., et al. (2013). Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature, 497(7448), 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y., & Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature, 410(6828), 599–604.

    Article  CAS  PubMed  Google Scholar 

  12. Politano, G., Logrand, F., Brancaccio, M., & Di Carlo, S. (2017). In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods, 124, 57–68.

    Article  CAS  PubMed  Google Scholar 

  13. Dimitrakopoulos, G. N., Dimitrakopoulou, K., Maraziotis, I. A., Sgarbas, K., & Bezerianos, A. (2014). Supervised method for construction of microRNA-mRNA networks: application in cardiac tissue aging dataset. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, 318–321.

    Google Scholar 

  14. Chiao, Y. A. (2013). MicroRNA-34a: a new piece in the cardiac aging puzzle. Circulation. Cardiovascular Genetics, 6(4), 437–438.

    Article  PubMed  Google Scholar 

  15. Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., et al. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordrecht, Netherlands), 35(3), 747–762.

    Article  CAS  Google Scholar 

  16. Christoffersen, N. R., Shalgi, R., Frankel, L. B., Leucci, E., Lees, M., Klausen, M., et al. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 17(2), 236–245.

    Article  CAS  PubMed  Google Scholar 

  17. Boon, R. A., Seeger, T., Heydt, S., Fischer, A., Hergenreider, E., Horrevoets, A. J., et al. (2011). MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circulation Research, 109(10), 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  18. Boon, R. A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495(7439), 107–110.

    Article  CAS  Google Scholar 

  19. Bei, Y., Wu, X., Cretoiu, D., Shi, J., Zhou, Q., Lin, S., et al. (2018). miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. Journal of Molecular and Cellular Cardiology, 115, 130–141.

    Article  CAS  PubMed  Google Scholar 

  20. Maejima, Y., Adachi, S., Ito, H., Hirao, K., & Isobe, M. (2008). Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell, 7(2), 125–136.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Z., Zhang, Z., Yao, J., Xie, Y., Dai, Q., Zhang, Y., et al. (2018). Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochemical and Biophysical Research Communications, 499(3), 441–446.

    Article  CAS  PubMed  Google Scholar 

  22. Guo, Y., Li, P., Gao, L., Zhang, J., Yang, Z., Bledsoe, G., et al. (2017). Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell, 16(4), 837–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, Y., & Sahoo, S. (2015). Exosomes explosion for cardiac resuscitation. Journal of the American College of Cardiology, 66(6), 612–615.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117(1), 7–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peche, H., Renaudin, K., Beriou, G., Merieau, E., Amigorena, S., & Cuturi, M. C. (2006). Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation, 6(7), 1541–1550.

    Article  CAS  PubMed  Google Scholar 

  26. Pironti, G., Strachan, R. T., Abraham, D., Mon-Wei Yu, S., Chen, M., Chen, W., et al. (2015). Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation, 131(24), 2120–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.

    Article  CAS  PubMed Central  Google Scholar 

  28. Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Looze, C., Yui, D., Leung, L., Ingham, M., Kaler, M., Yao, X., et al. (2009). Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochemical and Biophysical Research Communications, 378(3), 433–438.

    Article  CAS  PubMed  Google Scholar 

  30. Moldovan, L., Batte, K., Wang, Y., Wisler, J., & Piper, M. (2013). Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods in Molecular Biology, 1024, 129–145.

    Article  CAS  PubMed  Google Scholar 

  31. Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.

    Article  CAS  PubMed  Google Scholar 

  32. Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., et al. (2017). Plasma-derived exosomes contribute to inflammation via the TLR9-NF-kappaB pathway in chronic heart failure patients. Molecular Immunology, 87, 114–121.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H., Lee, O. H., Xin, H., Chen, L. Y., Qin, J., Chae, H. K., et al. (2009). TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Structural & Molecular Biology, 16(4), 372–379.

    Article  CAS  Google Scholar 

  34. Landsverk, H. B., Mora-Bermudez, F., Landsverk, O. J., Hasvold, G., Naderi, S., Bakke, O., et al. (2010). The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Reports, 11(11), 868–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loffredo, F. S., Pancoast, J. R., & Lee, R. T. (2013). Keep PNUTS in your heart. Circulation Research, 113(2), 97–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (81470515, 81670362, and 81600228) and Shanghai Medical Guide Project from Shanghai Science and Technology Committee (134119a3000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All human investigations conformed to the principles outlined in the Declaration of Helsinki and were approved by the institutional review committees of Shanghai Tongji Hospital.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Z., Xie, Y. et al. Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression. J. of Cardiovasc. Trans. Res. 12, 45–50 (2019). https://doi.org/10.1007/s12265-018-9847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9847-4

Keywords

Navigation