Long-Term Weight Gain Associated With High Omentin Levels at Hospital Discharge Improves Prognosis of Patients Following Acute Heart Failure

  • Rosa M. Agra-Bermejo
  • Rocio Gonzalez-Ferreiro
  • J. Nicolos Lopez-Canoa
  • Alfonso Varela-Roman
  • Ines Gomez-Otero
  • Sonia EirasEmail author
  • José R. González-Juanatey
Original Article


A obesity paradox has been described following heart failure (HF). The aim of this study was to analyze the association between food intake-involved adipokines and long-term weight changes. Leptin, adiponectin, and omentin were analyzed in 92 acute HF (AHF) patients at discharge, classified on the basis of weight gains or losses > 6%. The mean follow-up was 256 ± 143 days. Leptin and adiponectin levels were similar among weight groups. However, omentin levels were higher in those patients who had gained weight (16 ± 5 ng/mL) than in those who had lost weight (12 ± 4 ng/mL) or showed no weight change (11 ± 5 ng/mL; p < 0.002). Omentin levels were the best independent predictors for patients with weight gain, who had less mortality and hospital readmission during the follow-up. The association between omentin levels and weight gain might explain part of the obesity paradox in HF.


Acute heart failure Body weight changes Adipokines 



We would like to thank patient’s participation. The present study was supported by Complejo Hospitalario Universitario de Santiago de Compostela (Santiago de Compostela, Spain), Fondo de Investigaciones Sanitarias (PIE13/00024), and (PI13/01852) from Plan Estatal de I + D + I 2013–2016 and cofounded by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación el Fondo Europeo de Desarrollo Regional (FEDER).

Sources of Funding

Funding was provided by Fondo de Investigaciones Sanitarias (PIE13/00024) and (PI13/01852) from Plan Estatal de I + D + I 2013–2016.

Compliance with Ethical Standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12265_2018_9840_MOESM1_ESM.docx (58 kb)
ESM 1 (DOCX 57 kb)


  1. 1.
    Hubert, H. B., Feinleib, M., McNamara, P. M., & Castelli, W. P. (1983). Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation, 67, 968–977.CrossRefGoogle Scholar
  2. 2.
    Horwich, T. B., Fonarow, G. C., Hamilton, M. A., MacLellan, W. R., Woo, M. A., & Tillisch, J. H. (2001). The relationship between obesity and mortality in patients with heart failure. Journal of the American College of Cardiology, 38, 789–795.CrossRefGoogle Scholar
  3. 3.
    Oreopoulos, A., Padwal, R., Kalantar-Zadeh, K., Fonarow, G. C., Norris, C. M., & McAlister, F. A. (2008). Body mass index and mortality in heart failure: A meta-analysis. American Heart Journal, 156, 13–22.CrossRefGoogle Scholar
  4. 4.
    Uretsky, S., Messerli, F. H., Bangalore, S., et al. (2007). Obesity paradox in patients with hypertension and coronary artery disease. The American Journal of Medicine, 120, 863–870.CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Cambeiro, M. C., Abu-Assi, E., Raposeiras-Roubin, S., et al. (2014). Exploring the obesity paradox in atrial fibrillation. AFBAR (atrial fibrillation Barbanza area) registry results. Journal of Atrial Fibrillation, 6, 991.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Farre, N., Aranyo, J., Enjuanes, C., et al. (2015). Differences in neurohormonal activity partially explain the obesity paradox in patients with heart failure: The role of sympathetic activation. International Journal of Cardiology, 181, 120–126.CrossRefGoogle Scholar
  7. 7.
    Lavie, C. J., De Schutter, A., Alpert, M. A., Mehra, M. R., Milani, R. V., & Ventura, H. O. (2014). Obesity paradox, cachexia, frailty, and heart failure. Heart Failure Clinics, 10, 319–326.CrossRefGoogle Scholar
  8. 8.
    Nagarajan, V., Kohan, L., Holland, E., Keeley, E. C., & Mazimba, S. (2016). Obesity paradox in heart failure: A heavy matter. ESC Heart Failure, 3, 227–234.CrossRefGoogle Scholar
  9. 9.
    Sandek, A., Anker, S. D., & von Haehling, S. (2009). The gut and intestinal bacteria in chronic heart failure. Current Drug Metabolism, 10, 22–28.CrossRefGoogle Scholar
  10. 10.
    Khalid, U., Ather, S., Bavishi, C., et al. (2014). Pre-morbid body mass index and mortality after incident heart failure: the ARIC Study. J Am Coll Cardiol, 64, 2743–2749.CrossRefGoogle Scholar
  11. 11.
    Friedman, J. (2015). Leptin and the regulation of food intake and body weight. Journal of Nutritional Science and Vitaminology (Tokyo), 61(Suppl), S202.CrossRefGoogle Scholar
  12. 12.
    Brunetti, L., Orlando, G., Ferrante, C., et al. (2013). Orexigenic effects of omentin-1 related to decreased CART and CRH gene expression and increased norepinephrine synthesis and release in the hypothalamus. Peptides, 44, 66–74.CrossRefGoogle Scholar
  13. 13.
    Kubota, N., Yano, W., Kubota, T., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism, 6, 55–68.CrossRefGoogle Scholar
  14. 14.
    Fernandez-Trasancos, A., Agra, R. M., Garcia-Acuna, J. M., Fernandez, A. L., Gonzalez-Juanatey, J. R., & Eiras, S. (2017). Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring), 25, 1042–1049.CrossRefGoogle Scholar
  15. 15.
    Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B., & Tilg, H. (2004). Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochemical and Biophysical Research Communications, 323, 630–635.CrossRefGoogle Scholar
  16. 16.
    Sun, Y., Yang, Y., Qin, Z., et al. (2016). The acute-phase protein Orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway. Diabetes, 65, 1630–1641.CrossRefGoogle Scholar
  17. 17.
    Agra, R. M., Fernandez-Trasancos, A., Diaz-Rodriguez, E., et al. (2018). Nutrients restriction upregulates adiponectin in epicardial or subcutaneous adipose tissue: Impact in de novo heart failure patients. International Journal of Medical Sciences, 15, 417–424.CrossRefGoogle Scholar
  18. 18.
    Ponikowski, P., Voors, A. A., Anker, S. D., et al. (2016). 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. European Heart Journal, 37, 2129–2200.CrossRefGoogle Scholar
  19. 19.
    Levey, A. S., Bosch, J. P., Lewis, J. B., Greene, T., Rogers, N., & Roth, D. (1999). A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of diet in renal disease study group. Annals of Internal Medicine, 130, 461–470.CrossRefGoogle Scholar
  20. 20.
    Anker, S. D., Negassa, A., Coats, A. J., et al. (2003). Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet, 361, 1077–1083.CrossRefGoogle Scholar
  21. 21.
    Ignacio de Ulibarri, J., Gonzalez-Madrono, A., de Villar, N. G., et al. (2005). CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutrición Hospitalaria, 20, 38–45.PubMedGoogle Scholar
  22. 22.
    Kouris, N. T., Zacharos, I. D., Kontogianni, D. D., et al. (2005). The significance of CA125 levels in patients with chronic congestive heart failure. Correlation with clinical and echocardiographic parameters. European Journal of Heart Failure, 7, 199–203.CrossRefGoogle Scholar
  23. 23.
    Littnerova, S., Parenica, J., Spinar, J., et al. (2015). Positive influence of being overweight/obese on long term survival in patients hospitalised due to acute heart failure. PLoS One, 10, e0117142.CrossRefGoogle Scholar
  24. 24.
    Yancy, C. W., Jessup, M., Bozkurt, B., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation, 128, 1810–1852.CrossRefGoogle Scholar
  25. 25.
    McMurray, J. J., Adamopoulos, S., Anker, S. D., et al. (2012). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. European Journal of Heart Failure, 14, 803–869.CrossRefGoogle Scholar
  26. 26.
    Pocock, S. J., McMurray, J. J., Dobson, J., et al. (2008). Weight loss and mortality risk in patients with chronic heart failure in the candesartan in heart failure: Assessment of reduction in mortality and morbidity (CHARM) programme. European Heart Journal, 29, 2641–2650.CrossRefGoogle Scholar
  27. 27.
    Anker, S. D., & von Haehling, S. (2004). Inflammatory mediators in chronic heart failure: an overview. Heart, 90, 464–470.CrossRefGoogle Scholar
  28. 28.
    Beck-da-Silva, L., Higginson, L., Fraser, M., Williams, K., & Haddad, H. (2005). Effect of orlistat in obese patients with heart failure: A pilot study. Congestive Heart Failure, 11, 118–123.CrossRefGoogle Scholar
  29. 29.
    Mariotti, R., Castrogiovanni, F., Canale, M. L., Borelli, G., & Rondinini, L. (2008). Weight loss and quality of life in chronic heart failure patients. Journal of Cardiovascular Medicine (Hagerstown, Md.), 9, 576–580.CrossRefGoogle Scholar
  30. 30.
    Alpert, M. A., Terry, B. E., Mulekar, M., et al. (1997). Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. The American Journal of Cardiology, 80, 736–740.CrossRefGoogle Scholar
  31. 31.
    Zamora, E., Diez-Lopez, C., Lupon, J., et al. (2016). Weight loss in obese patients with heart failure. Journal of the American Heart Association, 5, e002468.CrossRefGoogle Scholar
  32. 32.
    Rossignol, P., Masson, S., Barlera, S., et al. (2015). Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: Insights from the GISSI-HF and Val-HeFT trials. European Journal of Heart Failure, 17, 424–433.CrossRefGoogle Scholar
  33. 33.
    Lavie, C. J., Sharma, A., Alpert, M. A., et al. (2016). Update on obesity and obesity paradox in heart failure. Progress in Cardiovascular Diseases, 58, 393–400.CrossRefGoogle Scholar
  34. 34.
    Sharma, A., Lavie, C. J., Borer, J. S., et al. (2015). Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. The American Journal of Cardiology, 115, 1428–1434.CrossRefGoogle Scholar
  35. 35.
    Ambrosy, A. P., Cerbin, L. P., Armstrong, P. W., et al. (2017). Body weight change during and after hospitalization for acute heart failure: Patient characteristics, markers of congestion, and outcomes: Findings from the ASCEND-HF trial. JACC Heart Failure, 5, 1–13.CrossRefGoogle Scholar
  36. 36.
    Nunez, J., Nunez, E., Consuegra, L., et al. (2007). Carbohydrate antigen 125: An emerging prognostic risk factor in acute heart failure? Heart, 93, 716–721.CrossRefGoogle Scholar
  37. 37.
    Nunez, J., Sanchis, J., Bodi, V., et al. (2010). Improvement in risk stratification with the combination of the tumour marker antigen carbohydrate 125 and brain natriuretic peptide in patients with acute heart failure. European Heart Journal, 31, 1752–1763.CrossRefGoogle Scholar
  38. 38.
    Kovacic, D., Marinsek, M., Gobec, L., Lainscak, M., & Podbregar, M. (2008). Effect of selective and non-selective beta-blockers on body weight, insulin resistance and leptin concentration in chronic heart failure. Clinical Research in Cardiology, 97, 24–31.CrossRefGoogle Scholar
  39. 39.
    Barbosa-Ferreira, J. M., Fernandes, F., Dabarian, A., & Mady, C. (2013). Leptin in heart failure. Expert Opin Med Diagn, 7, 113–117.CrossRefGoogle Scholar
  40. 40.
    Szabo, T., Scherbakov, N., Sandek, A., et al. (2013). Plasma adiponectin in heart failure with and without cachexia: Catabolic signal linking catabolism, symptomatic status, and prognosis. Nutr Metab Cardiovasc Dis, 24, 50–56.CrossRefGoogle Scholar
  41. 41.
    de Souza Batista, C. M., Yang, R. Z., Lee, M. J., et al. (2007). Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56, 1655–1661.CrossRefGoogle Scholar
  42. 42.
    Lafontan, M., & Viguerie, N. (2006). Role of adipokines in the control of energy metabolism: Focus on adiponectin. Current Opinion in Pharmacology, 6, 580–585.CrossRefGoogle Scholar
  43. 43.
    Agra, R. M., Teijeira-Fernandez, E., Pascual-Figal, D., et al. (2014). Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. European Journal of Clinical Investigation, 44, 29–37.CrossRefGoogle Scholar
  44. 44.
    Eiras, S., Varela-Roman, A., Andrade, M. C., et al. (2017). Non classical monocytes levels, increased by subcutaneous fat-Secretome, are associated with less Rehospitalization after heart failure admission. Journal of Cardiovascular Translational Research, 10, 16–26.CrossRefGoogle Scholar
  45. 45.
    Watanabe, T., Watanabe-Kominato, K., Takahashi, Y., Kojima, M., & Watanabe, R. (2017). Adipose tissue-derived Omentin-1 function and regulation. Comprehensive Physiology, 7, 765–781.CrossRefGoogle Scholar
  46. 46.
    von Haehling, S., Lainscak, M., Springer, J., & Anker, S. D. (2009). Cardiac cachexia: A systematic overview. Pharmacology & Therapeutics, 121, 227–252.CrossRefGoogle Scholar
  47. 47.
    Ostman, J., Efendic, S., & Arner, P. (1969). Catecholamines and metabolism of human adipose tissue. I. Comparison between in vitro effects of noradrenaline, adrenaline and theophylline on lipolysis in omental adipose tissue. Acta Medica Scandinavica, 186, 241–246.CrossRefGoogle Scholar
  48. 48.
    Wedick, N. M., Mayer-Davis, E. J., Wingard, D. L., Addy, C. L., & Barrett-Connor, E. (2001). Insulin resistance precedes weight loss in adults without diabetes : The rancho Bernardo study. American Journal of Epidemiology, 153, 1199–1205.CrossRefGoogle Scholar
  49. 49.
    Uriel, N., Gonzalez-Costello, J., Mignatti, A., et al. (2014). Adrenergic activation, fuel substrate availability, and insulin resistance in patients with congestive heart failure. JACC Heart Failure, 1, 331–337.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rosa M. Agra-Bermejo
    • 1
    • 2
    • 3
  • Rocio Gonzalez-Ferreiro
    • 1
    • 2
    • 3
  • J. Nicolos Lopez-Canoa
    • 1
    • 2
    • 3
  • Alfonso Varela-Roman
    • 1
    • 2
    • 3
  • Ines Gomez-Otero
    • 1
    • 2
    • 3
  • Sonia Eiras
    • 2
    • 3
    • 4
    Email author
  • José R. González-Juanatey
    • 1
    • 2
    • 3
  1. 1.Cardiovascular Area and Coronary UnitUniversity Clinical Hospital of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Cardiology GroupHealth Research Institute of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
  4. 4.Complejo Hospitalario Universitario de Santiago de CompostelaLaboratorio 6. IDIS. Planta-2, C/Choupana s/nSantiago de CompostelaSpain

Personalised recommendations