Skip to main content

Advertisement

Log in

New Insights into the Role of Exosomes in the Heart After Myocardial Infarction

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Intercellular communications play a pivotal role in several cardiac pathophysiological processes. One subtype of extracellular vesicles, so-called exosomes, became known as important intercellular communication mediators in the heart. Exosomes are lipid bilayer biological nanovesicles loaded with diverse proteins, lipids, and mRNAs/microRNAs. All major cardiac cell types can modulate recipient cellular function via the release of exosomes. After myocardial infarction (MI), exosomes, especially those secreted by different cardiac stem cells, have been shown to confer cardioprotective effects, activate regenerative signals, and participate into cardiac repair. In this review, we rapidly recall the biology of exosomes at the beginning. Then we summarize the exosomes secreted by different myocardial cells and their function in cardiac intercellular communication. At last, we discuss the role of these vesicles in cardiac repair after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMs:

Cardiomyocytes

CPCs:

Cardiac progenitor cells

CDCs:

Cardiospheres-derived cells

ECs:

Endothelial cells

EVs:

Extracellular vesicles

ESCs:

Embryonic stem cells

EEs:

Early endosomes

FBs:

Fibroblasts

ILVs:

Intraluminal vesicles

iPSCs:

Induced pluripotent stem cells

LEs:

Late endosomes

MVBs:

Multivesicular bodies

miRNAs:

MicroRNAs

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

SMCs:

Smooth muscle cells

References

  1. Reimer, K. A., Lowe, J. E., Rasmussen, M. M., & Jennings, R. B. (1977). The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation, 56(5), 786–794.

    Article  CAS  Google Scholar 

  2. Reimer, K. A., & Jennings, R. B. (1979). The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Laboratory Investigation, 40(6), 633–644.

    CAS  PubMed  Google Scholar 

  3. Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(7), 1552–1562. https://doi.org/10.1161/ATVBAHA.111.224915.

    Article  CAS  PubMed  Google Scholar 

  4. Curley, D., Lavin Plaza, B., Shah, A. M., & Botnar, R. M. (2018). Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology, 113(2), 10. https://doi.org/10.1007/s00395-018-0668-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yuan, M. J., Maghsoudi, T., & Wang, T. (2016). Exosomes mediate the intercellular communication after myocardial infarction. International Journal of Medical Sciences, 13(2), 113–116. https://doi.org/10.7150/ijms.14112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–344. https://doi.org/10.1161/CIRCRESAHA.114.300639.

    Article  CAS  PubMed  Google Scholar 

  7. Sluijter, J. P., Verhage, V., Deddens, J. C., van den Akker, F., & Doevendans, P. A. (2014). Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 102(2), 302–311. https://doi.org/10.1093/cvr/cvu022.

    Article  CAS  PubMed  Google Scholar 

  8. Iaconetti, C., Sorrentino, S., De Rosa, S., & Indolfi, C. (2016). Exosomal miRNAs in heart disease. Physiology (Bethesda), 31(1), 16–24. https://doi.org/10.1152/physiol.00029.2015.

    Article  CAS  Google Scholar 

  9. Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372. https://doi.org/10.1016/j.tcb.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  10. Arenaccio, C., & Federico, M. (2017). The multifaceted functions of exosomes in health and disease: an overview. Advances in Experimental Medicine and Biology, 998, 3–19. https://doi.org/10.1007/978-981-10-4397-0_1.

    Article  CAS  PubMed  Google Scholar 

  11. Thery, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature Reviews. Immunology, 9(8), 581–593. https://doi.org/10.1038/nri2567.

    Article  CAS  PubMed  Google Scholar 

  12. Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W., & Altevogt, P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of Translational Medicine, 9, 86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  14. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. https://doi.org/10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  15. Conigliaro, A., Fontana, S., Raimondo, S., & Alessandro, R. (2017). Exosomes: nanocarriers of biological messages. Advances in Experimental Medicine and Biology, 998, 23–43. https://doi.org/10.1007/978-981-10-4397-0_2.

    Article  CAS  PubMed  Google Scholar 

  16. Braicu, C., Tomuleasa, C., Monroig, P., Cucuianu, A., Berindan-Neagoe, I., & Calin, G. A. (2015). Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death and Differentiation, 22(1), 34–45. https://doi.org/10.1038/cdd.2014.130.

    Article  CAS  PubMed  Google Scholar 

  17. Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., et al. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), 450–455. https://doi.org/10.1038/nature21365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng, C., Wang, Q., You, W., Chen, M., & Xia, J. (2014). MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One, 9(2), e88566. https://doi.org/10.1371/journal.pone.0088566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454. https://doi.org/10.1161/CIRCGENETICS.110.958975.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, Y., Wang, X., Yang, J., Duan, X., Yao, Y., Shi, X., et al. (2012). A translational study of urine miRNAs in acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 53(5), 668–676. https://doi.org/10.1016/j.yjmcc.2012.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274. https://doi.org/10.1371/journal.pone.0154274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deddens, J. C., Vrijsen, K. R., Colijn, J. M., Oerlemans, M. I., Metz, C. H., van der Vlist, E. J., et al. (2016). Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac injury. Journal of Cardiovascular Translational Research, 9(4), 291–301. https://doi.org/10.1007/s12265-016-9705-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Rosa, S., Fichtlscherer, S., Lehmann, R., Assmus, B., Dimmeler, S., & Zeiher, A. M. (2011). Transcoronary concentration gradients of circulating microRNAs. Circulation, 124(18), 1936–1944. https://doi.org/10.1161/CIRCULATIONAHA.111.037572.

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto, S., Sakata, Y., Suna, S., Nakatani, D., Usami, M., Hara, M., et al. (2013). Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Research, 113(3), 322–326. https://doi.org/10.1161/CIRCRESAHA.113.301209.

    Article  CAS  PubMed  Google Scholar 

  25. Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249. https://doi.org/10.1161/JAHA.114.001249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, M., Yuan, S., Li, S., Li, L., Liu, M., & Wan, S. (2018). The exosome-derived biomarker in atherosclerosis and its clinical application. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9796-y.

  27. Bi, S., Wang, C., Jin, Y., Lv, Z., Xing, X., & Lu, Q. (2015). Correlation between serum exosome derived miR-208a and acute coronary syndrome. International Journal of Clinical and Experimental Medicine, 8(3), 4275–4280.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, P., Liu, Z., Xie, Y., Gu, H., Dai, Q., Yao, J., et al. (2018). Serum exosomes attenuate H2O2-induced apoptosis in rat H9C2 cardiomyocytes via ERK1/2. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9791-3.

  29. Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536. https://doi.org/10.1016/j.jacc.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  30. Bei, Y., Xu, T., Lv, D., Yu, P., Xu, J., Che, L., et al. (2017). Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Research in Cardiology, 112(4), 38. https://doi.org/10.1007/s00395-017-0628-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., et al. (2018). Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Molecular Cancer, 17(1), 82. https://doi.org/10.1186/s12943-018-0831-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bar, C., Chatterjee, S., & Thum, T. (2016). Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation, 134(19), 1484–1499. https://doi.org/10.1161/CIRCULATIONAHA.116.023686.

    Article  CAS  PubMed  Google Scholar 

  33. Vausort, M., Wagner, D. R., & Devaux, Y. (2014). Long noncoding RNAs in patients with acute myocardial infarction. Circulation Research, 115(7), 668–677. https://doi.org/10.1161/CIRCRESAHA.115.303836.

    Article  CAS  PubMed  Google Scholar 

  34. Creemers, E. E., & van Rooij, E. (2016). Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circulation Research, 118(1), 108–118. https://doi.org/10.1161/CIRCRESAHA.115.305242.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y., Sun, L., Xuan, L., Pan, Z., Li, K., Liu, S., et al. (2016). Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Scientific Reports, 6, 22384. https://doi.org/10.1038/srep22384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loyer, X., Vion, A. C., Tedgui, A., & Boulanger, C. M. (2014). Microvesicles as cell-cell messengers in cardiovascular diseases. Circulation Research, 114(2), 345–353. https://doi.org/10.1161/CIRCRESAHA.113.300858.

    Article  CAS  PubMed  Google Scholar 

  37. Barile, L., Gherghiceanu, M., Popescu, L. M., Moccetti, T., & Vassalli, G. (2012). Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. Journal of Biomedicine & Biotechnology, 2012, 354605. https://doi.org/10.1155/2012/354605.

    Article  Google Scholar 

  38. Gupta, S., & Knowlton, A. A. (2007). HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. American Journal of Physiology. Heart and Circulatory Physiology, 292(6), H3052–H3056. https://doi.org/10.1152/ajpheart.01355.2006.

    Article  CAS  PubMed  Google Scholar 

  39. Malik, Z. A., Kott, K. S., Poe, A. J., Kuo, T., Chen, L., Ferrara, K. W., et al. (2013). Cardiac myocyte exosomes: stability, HSP60, and proteomics. American Journal of Physiology. Heart and Circulatory Physiology, 304(7), H954–H965. https://doi.org/10.1152/ajpheart.00835.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genneback, N., Hellman, U., Malm, L., Larsson, G., Ronquist, G., Waldenstrom, A., et al. (2013). Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. Journal of Extracellular Vesicles, 2. https://doi.org/10.3402/jev.v2i0.20167.

  41. Yu, X., Deng, L., Wang, D., Li, N., Chen, X., Cheng, X., et al. (2012). Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. Journal of Molecular and Cellular Cardiology, 53(6), 848–857. https://doi.org/10.1016/j.yjmcc.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  42. Yang, Y., Li, Y., Chen, X., Cheng, X., Liao, Y., & Yu, X. (2016). Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl), 94(6), 711–724. https://doi.org/10.1007/s00109-016-1387-2.

    Article  CAS  Google Scholar 

  43. Zhang, X., Wang, X., Zhu, H., Kranias, E. G., Tang, Y., Peng, T., et al. (2012). Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One, 7(3), e32765. https://doi.org/10.1371/journal.pone.0032765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X., Huang, W., Liu, G., Cai, W., Millard, R. W., Wang, Y., et al. (2014). Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. Journal of Molecular and Cellular Cardiology, 74, 139–150. https://doi.org/10.1016/j.yjmcc.2014.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P., & Diez-Juan, A. (2016). Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovascular Research, 109(3), 397–408. https://doi.org/10.1093/cvr/cvv260.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia, N. A., Ontoria-Oviedo, I., Gonzalez-King, H., Diez-Juan, A., & Sepulveda, P. (2015). Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One, 10(9), e0138849. https://doi.org/10.1371/journal.pone.0138849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., et al. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121(19), 3997–4006, S3991-3915. https://doi.org/10.1182/blood-2013-02-478925.

    Article  CAS  PubMed  Google Scholar 

  48. Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256. https://doi.org/10.1038/ncb2441.

    Article  CAS  PubMed  Google Scholar 

  49. Mayo, J. N., & Bearden, S. E. (2015). Driving the hypoxia-inducible pathway in human pericytes promotes vascular density in an exosome-dependent manner. Microcirculation, 22(8), 711–723. https://doi.org/10.1111/micc.12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Halkein, J., Tabruyn, S. P., Ricke-Hoch, M., Haghikia, A., Nguyen, N. Q., Scherr, M., et al. (2013). MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. The Journal of Clinical Investigation, 123(5), 2143–2154. https://doi.org/10.1172/JCI64365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bang, C., Batkai, S., Dangwal, S., Gupta, S. K., Foinquinos, A., Holzmann, A., et al. (2014). Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of Clinical Investigation, 124(5), 2136–2146. https://doi.org/10.1172/JCI70577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279. https://doi.org/10.1016/j.yjmcc.2015.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manole, C. G., Cismasiu, V., Gherghiceanu, M., & Popescu, L. M. (2011). Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. Journal of Cellular and Molecular Medicine, 15(11), 2284–2296. https://doi.org/10.1111/j.1582-4934.2011.01449.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gray, W. D., French, K. M., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Platt, M. O., et al. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116(2), 255–263. https://doi.org/10.1161/CIRCRESAHA.116.304360.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571. https://doi.org/10.1016/j.bbrc.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vrijsen, K. R., Sluijter, J. P., Schuchardt, M. W., van Balkom, B. W., Noort, W. A., Chamuleau, S. A., et al. (2010). Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 14(5), 1064–1070. https://doi.org/10.1111/j.1582-4934.2010.01081.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le, T., & Chong, J. (2016). Cardiac progenitor cells for heart repair. Cell Death & Disease, 2, 16052. https://doi.org/10.1038/cddiscovery.2016.52.

    Article  Google Scholar 

  58. Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541. https://doi.org/10.1093/cvr/cvu167.

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619. https://doi.org/10.1016/j.stemcr.2014.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bei, Y., Das, S., Rodosthenous, R. S., Holvoet, P., Vanhaverbeke, M., Monteiro, M. C., et al. (2017). Extracellular vesicles in cardiovascular theranostics. Theranostics, 7(17), 4168–4182. https://doi.org/10.7150/thno.21274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  CAS  Google Scholar 

  62. Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Z., Su, X., Ashraf, M., Kim, I. M., Weintraub, N. L., Jiang, M., et al. (2018). Regenerative therapy for cardiomyopathies. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9807-z.

  64. Rosenblatt-Velin, N., Badoux, S., & Liaudet, L. (2016). Pharmacological therapy in the heart as an alternative to cellular therapy: a place for the brain natriuretic peptide? Stem Cells International, 2016, 5961342. https://doi.org/10.1155/2016/5961342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bielmann, C., Rignault-Clerc, S., Liaudet, L., Li, F., Kunieda, T., Sogawa, C., et al. (2015). Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Research in Cardiology, 110(1), 455. https://doi.org/10.1007/s00395-014-0455-4.

    Article  CAS  PubMed  Google Scholar 

  66. Rignault-Clerc, S., Bielmann, C., Liaudet, L., Waeber, B., Feihl, F., & Rosenblatt-Velin, N. (2017). Natriuretic peptide receptor B modulates the proliferation of the cardiac cells expressing the stem cell Antigen-1. Scientific Reports, 7, 41936. https://doi.org/10.1038/srep41936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980. https://doi.org/10.1161/CIRCRESAHA.109.210682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216. https://doi.org/10.1161/CIRCRESAHA.109.197723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215. https://doi.org/10.1093/eurheartj/ehw324.

    Article  PubMed  Google Scholar 

  70. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222. https://doi.org/10.1016/j.scr.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, H., Xiang, M., Meng, D., Sun, N., & Chen, S. (2016). Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells International, 2016, 4328362. https://doi.org/10.1155/2016/4328362.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kervadec, A., Bellamy, V., El Harane, N., Arakelian, L., Vanneaux, V., Cacciapuoti, I., et al. (2016). Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. The Journal of Heart and Lung Transplantation, 35(6), 795–807. https://doi.org/10.1016/j.healun.2016.01.013.

    Article  PubMed  Google Scholar 

  73. Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heusch, G., & Gersh, B. J. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Heart Journal, 38(11), 774–784. https://doi.org/10.1093/eurheartj/ehw224.

    Article  CAS  PubMed  Google Scholar 

  75. Sun, T., Dong, Y. H., Du, W., Shi, C. Y., Wang, K., Tariq, M. A., et al. (2017). The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040745.

  76. Rotini, A., Martinez-Sarra, E., Pozzo, E., & Sampaolesi, M. (2018). Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacological Research, 127, 58–66. https://doi.org/10.1016/j.phrs.2017.05.029.

    Article  CAS  PubMed  Google Scholar 

  77. Xiao, J., Pan, Y., Li, X. H., Yang, X. Y., Feng, Y. L., Tan, H. H., et al. (2016). Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death & Disease, 7(6), e2277. https://doi.org/10.1038/cddis.2016.181.

    Article  CAS  Google Scholar 

  78. Cambier, L., de Couto, G., Ibrahim, A., Echavez, A. K., Valle, J., Liu, W., et al. (2017). Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Molecular Medicine, 9(3), 337–352. https://doi.org/10.15252/emmm.201606924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gallet, R., Dawkins, J., Valle, J., Simsolo, E., de Couto, G., Middleton, R., et al. (2017). Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. European Heart Journal, 38(3), 201–211. https://doi.org/10.1093/eurheartj/ehw240.

    Article  CAS  PubMed  Google Scholar 

  80. Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360. https://doi.org/10.1016/j.ijcard.2014.12.043.

    Article  PubMed  Google Scholar 

  81. Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 9(2), e88685. https://doi.org/10.1371/journal.pone.0088685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312. https://doi.org/10.1016/j.scr.2013.01.002.

    Article  CAS  PubMed  Google Scholar 

  83. Xie, Y., Ibrahim, A., Cheng, K., Wu, Z., Liang, W., Malliaras, K., et al. (2014). Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells, 32(9), 2397–2406. https://doi.org/10.1002/stem.1736.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin), 92(4), 387–397. https://doi.org/10.1007/s00109-013-1110-5.

    Article  CAS  Google Scholar 

  86. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424. https://doi.org/10.1159/000438594.

    Article  CAS  PubMed  Google Scholar 

  87. Vrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., et al. (2016). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced Healthcare Materials, 5(19), 2555–2565. https://doi.org/10.1002/adhm.201600308.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson, J. D., Johansson, H. J., Graham, C. S., Vesterlund, M., Pham, M. T., Bramlett, C. S., et al. (2016). Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells, 34(3), 601–613. https://doi.org/10.1002/stem.2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ong, S. G., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., et al. (2014). Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation, 130(11 Suppl 1), S60–S69. https://doi.org/10.1161/CIRCULATIONAHA.113.007917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1). https://doi.org/10.1161/JAHA.115.002856.

  91. Kalra, H., Drummen, G. P., & Mathivanan, S. (2016). Focus on extracellular vesicles: introducing the next small big thing. International Journal of Molecular Sciences, 17(2), 170. https://doi.org/10.3390/ijms17020170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Rochette, L., Wu, Y. et al. New Insights into the Role of Exosomes in the Heart After Myocardial Infarction. J. of Cardiovasc. Trans. Res. 12, 18–27 (2019). https://doi.org/10.1007/s12265-018-9831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9831-z

Keywords

Navigation