Exosome-Derived Dystrophin from Allograft Myogenic Progenitors Improves Cardiac Function in Duchenne Muscular Dystrophic Mice


Progressive cardiomyocyte loss in Duchenne muscular dystrophy (DMD) leads to cardiac fibrosis, cardiomyopathy, and eventually heart failure. In the present study, we observed that myogenic progenitor cells (MPC) carry mRNA for the dystrophin gene. We tested whether cardiac function can be improved in DMD by allograft transplantation of MPC-derived exosomes (MPC-Exo) into the heart to restore dystrophin protein expression. Exo from C2C12 cells (an MPC cell line) or vehicle were delivered locally into the hearts of MDX mice. After 2 days of treatment, we observed that MPC-Exo restored dystrophin expression in the hearts of MDX mice, which correlated with improved myocardial function in dystrophin-deficient MDX mouse hearts. In conclusion, this study demonstrated that allogeneic WT-MPC-Exo transplantation transiently restored dystrophin gene expression and improved cardiac function in MDX mice, suggesting that allogenic exosomal delivery may serve as an alternative treatment for cardiomyopathy of DMD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Fayssoil, A., Nardi, O., Orlikowski, D., & Annane, D. (2010). Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Failure Reviews., 15(1), 103–107.

    Article  Google Scholar 

  2. 2.

    Gumerson, J. D., & Michele, D. E. (2011). The dystrophin-glycoprotein complex in the prevention of muscle damage. Journal of biomedicine & biotechnology., 2011, 210797.

    Article  Google Scholar 

  3. 3.

    D’Amario, D., Amodeo, A., Adorisio, R., Tiziano, F. D., Leone, A. M., Perri, G., et al. (2017). A current approach to heart failure in Duchenne muscular dystrophy. Heart (British Cardiac Society)., 103(22), 1770–1779.

    Google Scholar 

  4. 4.

    Kamdar, F., & Garry, D. J. (2016). Dystrophin-deficient cardiomyopathy. Journal of the American College of Cardiology, 67(21), 2533–2546.

    CAS  Article  Google Scholar 

  5. 5.

    Siemionow, M., Cwykiel, J., Heydemann, A., Garcia-Martinez, J., Siemionow, K., & Szilagyi, E. (2018). Creation of dystrophin expressing chimeric cells of myoblast origin as a novel stem cell based therapy for Duchenne muscular dystrophy. Stem cell reviews., 14(2), 189–199.

    CAS  Article  Google Scholar 

  6. 6.

    Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human molecular genetics. 2012;21(R1):R125–R134.

    CAS  Article  Google Scholar 

  7. 7.

    Aminzadeh, M. A., Rogers, R. G., Fournier, M., Tobin, R. E., Guan, X., Childers, M. K., et al. (2018). Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem cell reports., 10(3), 942–955.

    CAS  Article  Google Scholar 

  8. 8.

    Tang, Y. T., Huang, Y. Y., Zheng, L., Qin, S. H., Xu, X. P., An, T. X., et al. (2017). Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine, 40(3), 834–844.

    Article  Google Scholar 

  9. 9.

    Hu, G., Yao, H., Chaudhuri, A. D., Duan, M., Yelamanchili, S. V., Wen, H., et al. (2012). Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death & Disease, 3, e381.

    CAS  Article  Google Scholar 

  10. 10.

    Ruan, X. F., Li, Y. J., Ju, C. W., Shen, Y., Lei, W., Chen, C., et al. (2018). Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 39(4), 579–586.

    CAS  Article  Google Scholar 

  11. 11.

    Ruan, X. F., Ju, C. W., Shen, Y., Liu, Y. T., Kim, I. M., Yu, H., et al. (2018). Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 39(4), 569–578.

    CAS  Article  Google Scholar 

  12. 12.

    Chen, Z., Li, Y., Yu, H., Shen, Y., Ju, C., Ma, G., et al. (2017). Isolation of extracellular vesicles from stem cells. Methods in molecular biology (Clifton, NJ)., 1660, 389–394.

    CAS  Article  Google Scholar 

  13. 13.

    Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International journal of cardiology., 192, 61–69.

    Article  Google Scholar 

  14. 14.

    Helwa, I., Cai, J., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L., et al. (2017). A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1), e0170628.

    Article  Google Scholar 

  15. 15.

    Bayoumi AS, Park KM, Wang Y, Teoh JP, Aonuma T, Tang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. Journal of molecular and cellular cardiology. 2018;114:72–82.

    CAS  Article  Google Scholar 

  16. 16.

    Liu, N., Williams, A. H., Maxeiner, J. M., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., et al. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. The Journal of Clinical Investigation, 122(6), 2054–2065.

    CAS  Article  Google Scholar 

  17. 17.

    Terrill, J. R., Pinniger, G. J., Graves, J. A., Grounds, M. D., & Arthur, P. G. (2016). Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. The Journal of physiology., 594(11), 3095–3110.

    CAS  Article  Google Scholar 

  18. 18.

    Messina, S., Bitto, A., Aguennouz, M., Mazzeo, A., Migliorato, A., Polito, F., et al. (2009). Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Experimental neurology., 220(2), 349–358.

    CAS  Article  Google Scholar 

  19. 19.

    McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;390(10101):1489–1498.

  20. 20.

    Sakamoto, M., Yuasa, K., Yoshimura, M., Yokota, T., Ikemoto, T., Suzuki, M., et al. (2002). Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochemical and Biophysical Research Communications, 293(4), 1265–1272.

    CAS  Article  Google Scholar 

  21. 21.

    Mendell, J. R., Sahenk, Z., Malik, V., Gomez, A. M., Flanigan, K. M., Lowes, L. P., et al. (2015). A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Molecular therapy: the journal of the American Society of Gene Therapy., 23(1), 192–201.

    CAS  Article  Google Scholar 

  22. 22.

    Syed, Y. Y. (2016). Eteplirsen: first global approval. Drugs, 76(17), 1699–1704.

    CAS  Article  Google Scholar 

  23. 23.

    Zhang, Y., Long, C., Li, H., McAnally, J. R., Baskin, K. K., Shelton, J. M., et al. (2017). CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science advances., 3(4), e1602814.

    Article  Google Scholar 

  24. 24.

    Young, C. S., Hicks, M. R., Ermolova, N. V., Nakano, H., Jan, M., Younesi, S., et al. (2016). A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell, 18(4), 533–540.

    CAS  Article  Google Scholar 

  25. 25.

    Gauvreau, M. E., Cote, M. H., Bourgeois-Daigneault, M. C., Rivard, L. D., Xiu, F., Brunet, A., et al. (2009). Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic (Copenhagen, Denmark)., 10(10), 1518–1527.

    CAS  Article  Google Scholar 

  26. 26.

    Hagan, M., Ashraf, M., Kim, I. M., Weintraub, N. L., & Tang, Y. (2018). Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical hypotheses., 110, 97–100.

    CAS  Article  Google Scholar 

  27. 27.

    Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., & Hare, J. M. (2017). Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circulation research., 120(7), 1139–1150.

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, L., Hoffman, J. A., & Ruoslahti, E. (2005). Molecular profiling of heart endothelial cells. Circulation, 112(11), 1601–1611.

    CAS  Article  Google Scholar 

  29. 29.

    Kim, H., Yun, N., Mun, D., Kang, J. Y., Lee, S. H., Park, H., et al. (2018). Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochemical and biophysical research communications., 499(4), 803–808.

    CAS  Article  Google Scholar 

Download references


I. Kim, N.L. Weintraub, and Y. Tang were partially supported by the American Heart Association: GRNT31430008, NIH-AR070029, NIH-HL086555, NIH-HL134354, and NIH -HL12425.

Author information



Corresponding authors

Correspondence to Meng Jiang or Yaoliang Tang.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Animals were handled according to approved protocols and animal welfare regulations of the Institutional Animal Care and Use Committee of the Medical College of Georgia/Augusta University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, X., Jin, Y., Shen, Y. et al. Exosome-Derived Dystrophin from Allograft Myogenic Progenitors Improves Cardiac Function in Duchenne Muscular Dystrophic Mice. J. of Cardiovasc. Trans. Res. 11, 412–419 (2018). https://doi.org/10.1007/s12265-018-9826-9

Download citation


  • Dystrophin
  • Exosome
  • Myogenic progenitor cells
  • Cardiomyopathy