Skip to main content
Log in

RANKL Expression Is Increased in Circulating Mononuclear Cells of Patients with Calcific Aortic Stenosis

Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Cite this article

Abstract

We aimed to investigate whether the expression of the OPG/RANK/RANKL triad in peripheral blood mononuclear cells (PBMC) and circulating levels of markers of ectopic mineralization (OPG, FGF-23, PPi) are modified in patients with calcific aortic valve disease (CAVD). We found that patients affected by CAVD (n = 50) had significantly higher circulating levels of OPG as compared to control individuals (p = 0.003). No differences between the two groups were found in FGF-23 and PPi levels. RANKL expression was higher in the PBMC from CAVD patients (p = 0.018) and was directly correlated with the amount of valve calcification (p = 0.032). In vitro studies showed that treatment of valve interstitial cells (VIC) with RANKL plus phosphate was followed by increase in matrix mineralization (p = 0.001). In conclusion, RANKL expression is increased in PBMC of patients with CAVD, is directly correlated with the degree of valve calcification, and promotes pro-calcific differentiation of VIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindman, B. R., Clavel, M. A., Mathieu, P., Iung, B., Lancellotti, P., Otto, C. M., et al. (2016). Calcific aortic stenosis. Nature Reviews Disease Primers, 2, 16006. https://doi.org/10.1038/nrdp.2016.6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Towler, D. A. (2013). Molecular and cellular aspects of calcific aortic valve disease. Circulation Research, 113(2), 198–208. https://doi.org/10.1161/CIRCRESAHA.113.300155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kaden, J. J., Bickelhaupt, S., Grobholz, R., Haase, K. K., Sarikoc, A., Kilic, R., et al. (2004). Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. Journal of Molecular and Cellular Cardiology, 36(1), 57–66.

    Article  PubMed  CAS  Google Scholar 

  4. Zoppellaro, G., Faggin, E., Puato, M., Pauletto, P., & Rattazzi, M. (2012). Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies. American Journal of Kidney Diseases, 59(1), 135–144. https://doi.org/10.1053/j.ajkd.2011.07.027.

    Article  PubMed  CAS  Google Scholar 

  5. Shetty, R., Pepin, A., Charest, A., Perron, J., Doyle, D., Voisine, P., et al. (2006). Expression of bone-regulatory proteins in human valve allografts. Heart, 92(9), 1303–1308. https://doi.org/10.1136/hrt.2005.075903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bennett, B. J., Scatena, M., Kirk, E. A., Rattazzi, M., Varon, R. M., Averill, M., et al. (2006). Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(9), 2117–2124. https://doi.org/10.1161/01.ATV.0000236428.91125.e6.

    Article  PubMed  CAS  Google Scholar 

  7. Weiss, R. M., Miller, J. D., & Heistad, D. D. (2013). Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circulation Research, 113(2), 209–222. https://doi.org/10.1161/CIRCRESAHA.113.300153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dai, S. M., Nishioka, K., & Yudoh, K. (2004). Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Annals of the Rheumatic Diseases, 63(11), 1379–1386. https://doi.org/10.1136/ard.2003.018481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Graham, L. S., Parhami, F., Tintut, Y., Kitchen, C. M., Demer, L. L., & Effros, R. B. (2009). Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clinical Immunology, 133(2), 265–275. https://doi.org/10.1016/j.clim.2009.07.011.

    Article  PubMed  CAS  Google Scholar 

  10. Villa-Bellosta, R., & Egido, J. (2017). Phosphate, pyrophosphate, and vascular calcification: a question of balance. European Heart Journal, 38(23), 1801–1804. https://doi.org/10.1093/eurheartj/ehv605.

    Article  PubMed  Google Scholar 

  11. Baumgartner, H. C., Hung, J. C.-C., Bermejo, J., Chambers, J. B., Edvardsen, T., Goldstein, S., et al. (2017). Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. European Heart Journal. Cardiovascular Imaging, 18(3), 254–275. https://doi.org/10.1093/ehjci/jew335.

    Article  Google Scholar 

  12. Rattazzi, M., Iop, L., Faggin, E., Bertacco, E., Zoppellaro, G., Baesso, I., et al. (2008). Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2165–2172. https://doi.org/10.1161/ATVBAHA.108.174342.

    Article  PubMed  CAS  Google Scholar 

  13. Rattazzi, M., Bertacco, E., Iop, L., D'Andrea, S., Puato, M., Buso, G., et al. (2014). Extracellular pyrophosphate is reduced in aortic interstitial valve cells acquiring a calcifying profile: implications for aortic valve calcification. Atherosclerosis, 237(2), 568–576. https://doi.org/10.1016/j.atherosclerosis.2014.10.027.

    Article  PubMed  CAS  Google Scholar 

  14. Rattazzi, M., Faggin, E., Buso, R., Di Virgilio, R., Puato, M., Plebani, M., et al. (2016). Atorvastatin reduces circulating osteoprogenitor cells and T-cell RANKL expression in osteoporotic women: implications for the bone-vascular axis. Cardiovascular Therapeutics, 34(1), 13–20. https://doi.org/10.1111/1755-5922.12163.

    Article  PubMed  CAS  Google Scholar 

  15. Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., et al. (1998). Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development, 12(9), 1260–1268.

    Article  CAS  Google Scholar 

  16. Buso, G., Faggin, E., Pauletto, P., & Rattazzi, M. (2014). Osteoprotegerin in cardiovascular disease: ally or enemy? Current Pharmaceutical Design, 20(37), 5862–5869.

    Article  PubMed  CAS  Google Scholar 

  17. Harper, E., Forde, H., Davenport, C., Rochfort, K. D., Smith, D., & Cummins, P. M. (2016). Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascular Pharmacology, 82, 30–40. https://doi.org/10.1016/j.vph.2016.02.003.

    Article  PubMed  CAS  Google Scholar 

  18. Nagy, E., Eriksson, P., Yousry, M., Caidahl, K., Ingelsson, E., Hansson, G. K., et al. (2013). Valvular osteoclasts in calcification and aortic valve stenosis severity. International Journal of Cardiology, 168(3), 2264–2271. https://doi.org/10.1016/j.ijcard.2013.01.207.

    Article  PubMed  Google Scholar 

  19. Steinmetz, M., Skowasch, D., Wernert, N., Welsch, U., Preusse, C. J., Welz, A., et al. (2008). Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. The Journal of Heart Valve Disease, 17(2), 187–193.

    PubMed  Google Scholar 

  20. Weiss, R. M., Lund, D. D., Chu, Y., Brooks, R. M., Zimmerman, K. A., El Accaoui, R., et al. (2013). Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One, 8(6), e65201. https://doi.org/10.1371/journal.pone.0065201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Olesen, P., Nguyen, K., Wogensen, L., Ledet, T., & Rasmussen, L. M. (2007). Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H1058–H1064. https://doi.org/10.1152/ajpheart.00047.2006.

    Article  PubMed  CAS  Google Scholar 

  22. Cote, N., Mahmut, A., Bosse, Y., Couture, C., Page, S., Trahan, S., et al. (2013). Inflammation is associated with the remodeling of calcific aortic valve disease. Inflammation, 36(3), 573–581. https://doi.org/10.1007/s10753-012-9579-6.

    Article  PubMed  CAS  Google Scholar 

  23. Freeman, R. V., & Otto, C. M. (2005). Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation, 111(24), 3316–3326. https://doi.org/10.1161/CIRCULATIONAHA.104.486738.

    Article  PubMed  Google Scholar 

  24. Yamada, S., & Giachelli, C. M. (2016). Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone, 100, 87–93. https://doi.org/10.1016/j.bone.2016.11.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Linefsky, J. P., O'Brien, K. D., Katz, R., de Boer, I. H., Barasch, E., Jenny, N. S., et al. (2011). Association of serum phosphate levels with aortic valve sclerosis and annular calcification: the cardiovascular health study. Journal of the American College of Cardiology, 58(3), 291–297. https://doi.org/10.1016/j.jacc.2010.11.073.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rattazzi, M., Bertacco, E., Del Vecchio, A., Puato, M., Faggin, E., & Pauletto, P. (2013). Aortic valve calcification in chronic kidney disease. Nephrology, Dialysis, Transplantation, 28(12), 2968–2976. https://doi.org/10.1093/ndt/gft310.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, W., Feng, W., Wang, F., Li, W., Gao, C., Zhou, B., et al. (2008). Osteoprotegerin/RANK/RANKL axis in cardiac remodeling due to immuno-inflammatory myocardial disease. Experimental and Molecular Pathology, 84(3), 213–217. https://doi.org/10.1016/j.yexmp.2008.02.004.

    Article  PubMed  CAS  Google Scholar 

  28. Helske, S., Kovanen, P. T., Lindstedt, K. A., Salmela, K., Lommi, J., Turto, H., et al. (2007). Increased circulating concentrations and augmented myocardial extraction of osteoprotegerin in heart failure due to left ventricular pressure overload. European Journal of Heart Failure, 9(4), 357–363. https://doi.org/10.1016/j.ejheart.2006.10.015.

    Article  PubMed  CAS  Google Scholar 

  29. Borowiec, A., Dabrowski, R., Kowalik, I., Firek, B., Chwyczko, T., Janas, J., et al. (2015). Osteoprotegerin in patients with degenerative aortic stenosis and preserved left-ventricular ejection fraction. Journal of Cardiovascular Medicine (Hagerstown, Md.), 16(6), 444–450. https://doi.org/10.2459/JCM.0000000000000052.

    Article  CAS  Google Scholar 

  30. Callegari, A., Coons, M. L., Ricks, J. L., Rosenfeld, M. E., & Scatena, M. (2014). Increased calcification in osteoprotegerin-deficient smooth muscle cells: dependence on receptor activator of NF-kappaB ligand and interleukin 6. Journal of Vascular Research, 51(2), 118–131. https://doi.org/10.1159/000358920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. O'Neill, W. C., Sigrist, M. K., & McIntyre, C. W. (2010). Plasma pyrophosphate and vascular calcification in chronic kidney disease. Nephrology, Dialysis, Transplantation, 25(1), 187–191. https://doi.org/10.1093/ndt/gfp362.

    Article  PubMed  CAS  Google Scholar 

  32. Villa-Bellosta, R., Rivera-Torres, J., Osorio, F. G., Acin-Perez, R., Enriquez, J. A., Lopez-Otin, C., et al. (2013). Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation, 127(24), 2442–2451. https://doi.org/10.1161/CIRCULATIONAHA.112.000571.

    Article  PubMed  CAS  Google Scholar 

  33. Albright, R. A., Stabach, P., Cao, W., Kavanagh, D., Mullen, I., Braddock, A. A., et al. (2015). ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nature Communications, 6, 10006. https://doi.org/10.1038/ncomms10006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Thompson, B., & Towler, D. A. (2012). Arterial calcification and bone physiology: role of the bone-vascular axis. Nature Reviews. Endocrinology, 8(9), 529–543. https://doi.org/10.1038/nrendo.2012.36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Rattazzi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all subjects for being included in the study.

Additional information

Associate Editor Adrian Chester oversaw the review of this article.

Electronic Supplementary Material

ESM 1

Correlation between Pi and RANKL levels with the calcification of aortic valve. The gene expression of RANKL in PBMC and the levels of Pi in the serum have been correlated with the degree of calcium deposition within the aortic valve (n = 38). In particular, patients with CAVD were stratified into four groups according to both RANKL and Pi levels. Patients were considered RANKL_high or RANKL_low in case of ΔCT values below or above the median, respectively. Similarly patients were classified as Pi_high or Pi_low in case of serum Pi levels above or below the median of the population. The percentage of calcified valve areas was quantified in CT images by using a customized image analysis system (see also Fig. 2). Although without reaching statistical significance (ANOVA p = 0.074), we observed that the higher degree of calcified area was observed in patients with both RANKL_high and Pi_high. Viceversa, the lower percentage of calcification was seen in the group of patients with both RANKL_low and Pi_low. (PNG 47 kb)

ESM 2

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattazzi, M., Faggin, E., Bertacco, E. et al. RANKL Expression Is Increased in Circulating Mononuclear Cells of Patients with Calcific Aortic Stenosis. J. of Cardiovasc. Trans. Res. 11, 329–338 (2018). https://doi.org/10.1007/s12265-018-9804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9804-2

Keywords

Navigation