Skip to main content

Advertisement

Log in

GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) has emerged as a public health burden with currently no effective medication. We assessed the treatment effects of the incretin hormone glucagon-like peptide-1 (GLP-1) on cardiac metabolism and function in a model of HFpEF. Following aortic banding, rats developed HFpEF characterized by diastolic dysfunction, pulmonary congestion, and poor survival (38%). A 4-week GLP-1 treatment via osmotic pumps significantly improved survival (70%) and reduced left ventricular stiffness, diastolic dysfunction, and pulmonary congestion. Isolated heart perfusion revealed preserved cardiac glucose oxidation (GO) and a shift in cardiac substrate utilization towards GO. While GLP-1 may boost insulin secretion and responsiveness, the protective effects were not related to cardiac insulin action. GLP-1 improves diastolic function and survival in rats with HFpEF, which was associated with a cardiac substrate switch towards GO. The therapeutic role of GLP-1 in HFpEF is new and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drucker, D. J. (2006). The biology of incretin hormones. Cell Metabolism, 3(3), 153–165.

    Article  PubMed  CAS  Google Scholar 

  2. Nguyen, T. D., Shingu, Y., Amorim, P. A., Schwarzer, M., & Doenst, T. (2013). Glucagon-like peptide-1 reduces contractile function and fails to boost glucose utilization in normal hearts in the presence of fatty acids. International Journal of Cardiology, 168(4), 4085–4092.

    Article  PubMed  Google Scholar 

  3. Timmers, L., Henriques, J. P., de Kleijn, D. P., Devries, J. H., Kemperman, H., Steendijk, P., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology, 53(6), 501–510.

    Article  PubMed  CAS  Google Scholar 

  4. Hausenloy, D. J., Whittington, H. J., Wynne, A. M., Begum, S. S., Theodorou, L., Riksen, N., et al. (2013). Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovascular Diabetology, 12, 154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism, 24(1), 15–30.

    Article  PubMed  CAS  Google Scholar 

  6. Horgan, S., Watson, C., Glezeva, N., & Baugh, J. (2014). Murine models of diastolic dysfunction and heart failure with preserved ejection fraction. Journal of Cardiac Failure, 20(12), 984–995.

    Article  PubMed  CAS  Google Scholar 

  7. Conceicao, G., Heinonen, I., Lourenco, A. P., Duncker, D. J., & Falcao-Pires, I. (2016). Animal models of heart failure with preserved ejection fraction. Netherlands Heart Journal, 24(4), 275–286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shah, S. J., Kitzman, D. W., Borlaug, B. A., van Heerebeek, L., Zile, M. R., Kass, D. A., et al. (2016). Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation, 134(1), 73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doenst, T., Pytel, G., Schrepper, A., Amorim, P., Farber, G., Shingu, Y., et al. (2010). Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovascular Research, 86(3), 461–470.

    Article  PubMed  CAS  Google Scholar 

  10. Shingu, Y., Amorim, P. A., Nguyen, T. D., Osterholt, M., Schwarzer, M., & Doenst, T. (2013). Echocardiography alone allows the determination of heart failure stages in rats with pressure overload. The Thoracic and Cardiovascular Surgeon, 61(8), 718–725.

    Article  PubMed  Google Scholar 

  11. Nguyen, T. D., Shingu, Y., Schwarzer, M., Schrepper, A., & Doenst, T. (2013). The E-wave deceleration rate E/DT outperforms the tissue Doppler-derived index E/e' in characterizing lung remodeling in heart failure with preserved ejection fraction. PLoS One, 8(12), e82077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zaha, V., Grohmann, J., Gobel, H., Geibel, A., Beyersdorf, F., & Doenst, T. (2003). Experimental model for heart failure in rats—induction and diagnosis. The Thoracic and Cardiovascular Surgeon, 51(4), 211–215.

    Article  PubMed  CAS  Google Scholar 

  13. Raya, T. E., Gay, R. G., Lancaster, L., Aguirre, M., Moffett, C., & Goldman, S. (1988). Serial changes in left ventricular relaxation and chamber stiffness after large myocardial infarction in rats. Circulation, 77(6), 1424–1431.

    Article  PubMed  CAS  Google Scholar 

  14. Fischer-Rasokat, U., Beyersdorf, F., & Doenst, T. (2003). Insulin addition after ischemia improves recovery of function equal to ischemic preconditioning in rat heart. Basic Research in Cardiology, 98(5), 329–336.

    Article  PubMed  CAS  Google Scholar 

  15. King, L. M., & Opie, L. H. (1998). Glucose and glycogen utilisation in myocardial ischemia--changes in metabolism and consequences for the myocyte. Molecular and Cellular Biochemistry, 180(1–2), 3–26.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, Y., Guo, H., Xu, D., Xu, X., Wang, H., Hu, X., et al. (2012). Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension, 59(6), 1170–1178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lamb, H. J., Beyerbacht, H. P., van der Laarse, A., Stoel, B. C., Doornbos, J., van der Wall, E. E., et al. (1999). Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation, 99(17), 2261–2267.

    Article  PubMed  CAS  Google Scholar 

  18. Diamant, M., Lamb, H. J., Groeneveld, Y., Endert, E. L., Smit, J. W., Bax, J. J., et al. (2003). Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. Journal of the American College of Cardiology, 42(2), 328–335.

    Article  PubMed  CAS  Google Scholar 

  19. Nikolaidis, L. A., Elahi, D., Shen, Y. T., & Shannon, R. P. (2005). Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 289(6), H2401–H2408.

    Article  PubMed  CAS  Google Scholar 

  20. Poornima, I., Brown, S. B., Bhashyam, S., Parikh, P., Bolukoglu, H., & Shannon, R. P. (2008). Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circulation. Heart Failure, 1(3), 153–160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brownsey, R. W., Boone, A. N., & Allard, M. F. (1997). Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovascular Research, 34(1), 3–24.

    Article  PubMed  CAS  Google Scholar 

  22. Halbirk, M., Norrelund, H., Moller, N., Holst, J. J., Schmitz, O., Nielsen, R., et al. (2010). Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 298(3), H1096–H1102.

    Article  PubMed  CAS  Google Scholar 

  23. Lepore, J. J., Olson, E., Demopoulos, L., Haws, T., Fang, Z., Barbour, A. M., et al. (2016). Effects of the novel long-acting GLP-1 agonist, albiglutide, on cardiac function, cardiac metabolism, and exercise capacity in patients with chronic heart failure and reduced ejection fraction. JACC Heart Failure, 4(7), 559–566.

    Article  PubMed  Google Scholar 

  24. Margulies, K. B., Hernandez, A. F., Redfield, M. M., Givertz, M. M., Oliveira, G. H., Cole, R., et al. (2016). Effects of Liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA, 316(5), 500–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jorsal, A., Kistorp, C., Holmager, P., Tougaard, R. S., Nielsen, R., Hanselmann, A., et al. (2017). Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. European Journal of Heart Failure, 19(1), 69–77.

    Article  PubMed  CAS  Google Scholar 

  26. Paulus, W. J., & van Ballegoij, J. J. (2010). Treatment of heart failure with normal ejection fraction: an inconvenient truth! Journal of the American College of Cardiology, 55(6), 526–537.

    Article  PubMed  Google Scholar 

  27. Holland, D. J., Kumbhani, D. J., Ahmed, S. H., & Marwick, T. H. (2011). Effects of treatment on exercise tolerance, cardiac function, and mortality in heart failure with preserved ejection fraction. A meta-analysis. Journal of the American College of Cardiology, 57(16), 1676–1686.

    Article  PubMed  Google Scholar 

  28. Kitzman, D. W., Brubaker, P., Morgan, T., Haykowsky, M., Hundley, G., Kraus, W. E., et al. (2016). Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA, 315(1), 36–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nathanson, D., Zethelius, B., Berne, C., Lind, L., Andren, B., Ingelsson, E., et al. (2011). Plasma levels of glucagon like peptide-1 associate with diastolic function in elderly men. Diabetic Medicine, 28(3), 301–305.

    PubMed  CAS  Google Scholar 

  30. Leite, S., Oliveira-Pinto, J., Tavares-Silva, M., Abdellatif, M., Fontoura, D., Falcao-Pires, I., et al. (2015). Echocardiography and invasive hemodynamics during stress testing for diagnosis of heart failure with preserved ejection fraction: an experimental study. American Journal of Physiology. Heart and Circulatory Physiology, 308(12), H1556–H1563.

    Article  PubMed  CAS  Google Scholar 

  31. Pirozzi, F., Paglia, A., Sasso, L., Abete, P., Carlomagno, A., Tocchetti, C. G., et al. (2015). Mitral peak early diastolic filling velocity to deceleration time ratio as a predictor of prognosis in patients with chronic heart failure and preserved or reduced ejection fraction. Journal of Geriatric Cardiology, 12(4), 346–352.

    PubMed  PubMed Central  Google Scholar 

  32. Taegtmeyer, H., Golfman, L., Sharma, S., Razeghi, P., & van Arsdall, M. (2004). Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Annals of the New York Academy of Sciences, 1015, 202–213.

    Article  PubMed  CAS  Google Scholar 

  33. Sack, M. N., Rader, T. A., Park, S., Bastin, J., McCune, S. A., & Kelly, D. P. (1996). Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation, 94(11), 2837–2842.

    Article  PubMed  CAS  Google Scholar 

  34. Taegtmeyer, H. (2002). Switching metabolic genes to build a better heart. Circulation, 106(16), 2043–2045.

    Article  PubMed  Google Scholar 

  35. Osterholt, M., Nguyen, T. D., Schwarzer, M., & Doenst, T. (2013). Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Failure Reviews, 18(5), 645–656.

    Article  PubMed  CAS  Google Scholar 

  36. van Bilsen, M., van Nieuwenhoven, F. A., & van der Vusse, G. J. (2009). Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovascular Research, 81(3), 420–428.

    Article  PubMed  CAS  Google Scholar 

  37. Turer, A. T., Malloy, C. R., Newgard, C. B., & Podgoreanu, M. V. (2010). Energetics and metabolism in the failing heart: important but poorly understood. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 458–465.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heusch, G., Libby, P., Gersh, B., Yellon, D., Bohm, M., Lopaschuk, G., et al. (2014). Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, 383(9932), 1933–1943.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research, 113(6), 709–724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Oktay, A. A., & Shah, S. J. (2014). Current perspectives on systemic hypertension in heart failure with preserved ejection fraction. Current Cardiology Reports, 16(12), 545.

    Article  PubMed  Google Scholar 

  41. Redfield, M. M. (2016). Heart failure with preserved ejection fraction. The New England Journal of Medicine, 375(19), 1868–1877.

    Article  PubMed  Google Scholar 

  42. Little, W. C., & Borlaug, B. A. (2015). Exercise intolerance in heart failure with preserved ejection fraction: what does the heart have to do with it? Circulation. Heart Failure, 8(2), 233–235.

    Article  PubMed  Google Scholar 

  43. Schrepper, A., Schwarzer, M., Schope, M., Amorim, P. A., & Doenst, T. (2012). Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload—role of respiratory chain complex activity. Journal of Molecular and Cellular Cardiology, 52(1), 125–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by grants of the Novartis-Stiftung für Therapeutische Forschung and the DFG (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Doenst.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experimental protocols were approved by the responsible Institutional Animal Care and Use Committee.

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Associate Editor Saptarsi Haldar oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Shingu, Y., Amorim, P.A. et al. GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction. J. of Cardiovasc. Trans. Res. 11, 259–267 (2018). https://doi.org/10.1007/s12265-018-9795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9795-z

Keywords

Navigation