Skip to main content

Advertisement

Log in

Sustained Placental Growth Factor-2 Treatment Does Not Aggravate Advanced Atherosclerosis in Ischemic Cardiomyopathy

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Angiogenic growth factor therapy for ischemic cardiovascular disease carries a risk of stimulating atherosclerotic plaque growth. We evaluated risk benefit ratio of sustained administration of recombinant human placental growth factor (rhPlGF)-2 in mice with advanced atherosclerosis and chronic ischemic cardiomyopathy. We maintained apolipoprotein E-deficient mice on a high cholesterol diet and induced myocardial infarction by transient ligation at 4 weeks. At 8 weeks, we assessed left ventricular (LV) function and randomized mice to receive rhPlGF-2 or vehicle (VEH) subcutaneously for 28 days. Administration of rhPlGF-2 significantly increased PlGF plasma levels without adverse hemodynamic or systemic inflammatory effects. RhPlGF-2 did not increase plaque area, composition, or vulnerability in the aortic arch. RhPlGF-2 significantly improved contractile function and reduced LV end-systolic and end-diastolic volume indices with a concomitant increase in capillary and arteriolar density in ischemic myocardium. RhPlGF-2 may represent a promising therapeutic strategy in chronic ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Apo E−/− :

Apolipoprotein E knockout

EF:

Ejection fraction

ESVi/EDVi:

End-systolic/diastolic volume index

hsCRP:

High-sensitivity C-reactive protein

ICAM:

Intercellular adhesion molecule

IL:

Interleukin

LV:

Left ventricle

MAP:

Mean arterial pressure

MI:

Myocardial infarction

PBS:

Phosphate-buffered saline

PRSW:

Preload-recruitable stroke work

rhPlGF:

Recombinant human placental growth factor

SBP/DBP:

Systolic/diastolic blood pressure

TPR:

Total peripheral resistance

VCAM:

Vascular cell adhesion molecule

VEGF(R):

Vascular endothelial growth factor (receptor)

VEH:

Vehicle

References

  1. Giacca, M., & Zacchigna, S. (2012). VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Therapy, 19(6), 622–629. doi:10.1038/gt.2012.17.

    Article  CAS  PubMed  Google Scholar 

  2. Sodha, N. R., Chu, L. M., Boodhwani, M., & Sellke, F. W. (2010). Pharmacotherapy for end-stage coronary artery disease. Expert Opinion on Pharmacotherapy, 11(2), 207–213. doi:10.1517/14656560903439737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation, 131(4), e29–322. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  4. Mack, C. A., Patel, S. R., Schwarz, E. A., Zanzonico, P., Hahn, R. T., Ilercil, A., et al. (1998). Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 168–176. doi:10.1016/S0022-5223(98)70455-6.

    Article  CAS  PubMed  Google Scholar 

  5. Rajanayagam, M. A., Shou, M., Thirumurti, V., Lazarous, D. F., Quyyumi, A. A., Goncalves, L., et al. (2000). Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. Journal of the American College of Cardiology, 35(2), 519–526. doi:10.1016/S0735-1097(99)00550-1.

    Article  CAS  PubMed  Google Scholar 

  6. Lopez, J. J., Edelman, E. R., Stamler, A., Hibberd, M. G., Prasad, P., Caputo, R. P., et al. (1997). Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. The Journal of Pharmacology and Experimental Therapeutics, 282(1), 385–390.

    CAS  PubMed  Google Scholar 

  7. Harada, K., Grossman, W., Friedman, M., Edelman, E. R., Prasad, P. V., Keighley, C. S., et al. (1994). Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. The Journal of Clinical Investigation, 94(2), 623–630. doi:10.1172/JCI117378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lynch, P., Lee, T. C., Fallavollita, J. A., Canty Jr., J. M., & Suzuki, G. (2007). Intracoronary administration of AdvFGF-5 (fibroblast growth factor-5) ameliorates left ventricular dysfunction and prevents myocyte loss in swine with developing collaterals and ischemic cardiomyopathy. Circulation, 116(11 Suppl), I71–I76. doi:10.1161/CIRCULATIONAHA.106.681866.

    CAS  PubMed  Google Scholar 

  9. Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., et al. (2003). The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation, 107(10), 1359–1365. doi:10.1161/01.CIR.0000061911.47710.8A.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart, D. J., Hilton, J. D., Arnold, J. M., Gregoire, J., Rivard, A., Archer, S. L., et al. (2006). Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Therapy, 13(21), 1503–1511. doi:10.1038/sj.gt.3302802.

    Article  CAS  PubMed  Google Scholar 

  11. Losordo, D. W., Vale, P. R., Hendel, R. C., Milliken, C. E., Fortuin, F. D., Cummings, N., et al. (2002). Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105(17), 2012–2018. doi:10.1161/01.CIR.0000015982.70785.B7.

    Article  CAS  PubMed  Google Scholar 

  12. Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. Journal of the American College of Cardiology, 45(7), 982–988. doi:10.1016/j.jacc.2004.12.068.

    Article  CAS  PubMed  Google Scholar 

  13. De Falco, S. (2012). The discovery of placenta growth factor and its biological activity. Experimental & Molecular Medicine, 44(1), 1–9. doi:10.3858/emm.2012.44.1.025.

    Article  CAS  Google Scholar 

  14. Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., et al. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Medicine, 8(8), 831–840. doi:10.1038/nm731.

    CAS  PubMed  Google Scholar 

  15. Dewerchin, M., & Carmeliet, P. (2012). PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harbor Perspectives in Medicine, 2(8). doi:10.1101/cshperspect.a011056.

  16. Hoffmann, D. C., Willenborg, S., Koch, M., Zwolanek, D., Muller, S., Becker, A. K., et al. (2013). Proteolytic processing regulates placental growth factor activities. The Journal of Biological Chemistry, 288(25), 17976–17989. doi:10.1074/jbc.M113.451831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, M., Claus, P., Vanden Driessche, N., Reyns, G., Pokreisz, P., Gillijns, H., et al. (2016). Placental growth factor 2—a potential therapeutic strategy for chronic myocardial ischemia. International Journal of Cardiology, 203, 534–542. doi:10.1016/j.ijcard.2015.10.177.

    Article  PubMed  Google Scholar 

  18. Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.1038/86490.

    Article  CAS  PubMed  Google Scholar 

  19. Roncal, C., Buysschaert, I., Gerdes, N., Georgiadou, M., Ovchinnikova, O., Fischer, C., et al. (2010). Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovascular Research, 86(1), 29–36. doi:10.1093/cvr/cvp380.

    Article  CAS  PubMed  Google Scholar 

  20. Khurana, R., Moons, L., Shafi, S., Luttun, A., Collen, D., Martin, J. F., et al. (2005). Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation, 111(21), 2828–2836. doi:10.1161/circulationaha.104.495887.

    Article  CAS  PubMed  Google Scholar 

  21. Williams, R., Needles, A., Cherin, E., Zhou, Y. Q., Henkelman, R. M., Adamson, S. L., et al. (2007). Noninvasive ultrasonic measurement of regional and local pulse-wave velocity in mice. Ultrasound in Medicine & Biology, 33(9), 1368–1375. doi:10.1016/j.ultrasmedbio.2007.03.012.

    Article  Google Scholar 

  22. Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. Journal of Applied Physiology (1985), 102(6), 2104–2111. doi:10.1152/japplphysiol.00033.2007.

    Article  Google Scholar 

  23. Dutta, P., Courties, G., Wei, Y., Leuschner, F., Gorbatov, R., Robbins, C. S., et al. (2012). Myocardial infarction accelerates atherosclerosis. Nature, 487(7407), 325–329. doi:10.1038/nature11260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Selvaraj, S. K., Giri, R. K., Perelman, N., Johnson, C., Malik, P., & Kalra, V. K. (2003). Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood, 102(4), 1515–1524. doi:10.1182/blood-2002-11-3423.

    Article  CAS  PubMed  Google Scholar 

  25. Kanwar, S. S., Stone, G. W., Singh, M., Virmani, R., Olin, J., Akasaka, T., et al. (2016). Acute coronary syndromes without coronary plaque rupture. Nature Reviews. Cardiology, 13(5), 257–265. doi:10.1038/nrcardio.2016.19.

    Article  PubMed  Google Scholar 

  26. Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis, 14(1), 133–140.

    Article  CAS  PubMed  Google Scholar 

  27. Carnevale, D., Cifelli, G., Mascio, G., Madonna, M., Sbroggio, M., Perrino, C., et al. (2011). Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodeling during cardiac pressure overload. Circulation, 124(12), 1337–1350. doi:10.1161/CIRCULATIONAHA.111.050500.

    Article  CAS  PubMed  Google Scholar 

  28. Accornero, F., van Berlo, J. H., Benard, M. J., Lorenz, J. N., Carmeliet, P., & Molkentin, J. D. (2011). Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circulation Research, 109(3), 272–280. doi:10.1161/CIRCRESAHA.111.240820.

    Article  CAS  PubMed  Google Scholar 

  29. MacArthur, J. M., Bishop, J. R., Stanford, K. I., Wang, L., Bensadoun, A., Witztum, J. L., et al. (2007). Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. The Journal of Clinical Investigation, 117(1), 153–164. doi:10.1172/JCI29154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bishop, J. R., Schuksz, M., & Esko, J. D. (2007). Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 446(7139), 1030–1037. doi:10.1038/nature05817.

    Article  CAS  PubMed  Google Scholar 

  31. Tran-Lundmark, K., Tran, P. K., Paulsson-Berne, G., Friden, V., Soininen, R., Tryggvason, K., et al. (2008). Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circulation Research, 103(1), 43–52. doi:10.1161/circresaha.108.172833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dallinga, M. G., & Dallinga-Thie, G. M. (2016). Role of sulfatase 2 in lipoprotein metabolism and angiogenesis. Current Opinion in Lipidology, 27(2), 181–186. doi:10.1097/MOL.0000000000000271.

    Article  CAS  PubMed  Google Scholar 

  33. Libby, P., & Pasterkamp, G. (2015). Requiem for the ‘vulnerable plaque’. European Heart Journal, 36(43), 2984–2987. doi:10.1093/eurheartj/ehv349.

    PubMed  Google Scholar 

  34. Autiero, M., Luttun, A., Tjwa, M., & Carmeliet, P. (2003). Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. Journal of Thrombosis and Haemostasis, 1(7), 1356–1370. doi:10.1046/j.1538-7836.2003.00263.x.

    Article  CAS  PubMed  Google Scholar 

  35. Cudmore, M. J., Hewett, P. W., Ahmad, S., Wang, K. Q., Cai, M., Al-Ani, B., et al. (2012). The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nature Communications, 3, 972. doi:10.1038/ncomms1977.

    Article  PubMed  Google Scholar 

  36. Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., et al. (2007). Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell, 131(3), 463–475. doi:10.1016/j.cell.2007.08.038.

    Article  CAS  PubMed  Google Scholar 

  37. Bellik, L., Vinci, M. C., Filippi, S., Ledda, F., & Parenti, A. (2005). Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. British Journal of Pharmacology, 146(4), 568–575. doi:10.1038/sj.bjp.0706347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaper, W. (2009). Collateral circulation: past and present. Basic Research in Cardiology, 104(1), 5–21. doi:10.1007/s00395-008-0760-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Aernout Luttun for helpful advice and Dr. Ann Belmans for her assistance with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Janssens.

Ethics declarations

Sources of Funding

This work was supported by a KU Leuven Program Financing grant (PF 10/014) to Dr. S. Janssens, by a dedicated grant of Life Science Research Partners VZW, a non-profit organization for the advancement of biomedical science and by a postdoctoral grant of the Fund for Scientific Research Flanders to Dr. P. Pokreisz (1246510N) and to Dr. Swinnen (12B8212N). Prof. Janssens holds a Chair in Cardiology sponsored by Astra Zeneca and a Bayer SA-NV Chair in Cardiovascular Medicine.

Disclosures

D.C. is a chairman of the board of CoBioRes, NV, which could be perceived as conflict of interest. The other authors have declared that no conflict of interest exists.

Ethical Approval Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Electronic supplementary material

ESM 1

(DOCX 81909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Pokreisz, P., Swinnen, M. et al. Sustained Placental Growth Factor-2 Treatment Does Not Aggravate Advanced Atherosclerosis in Ischemic Cardiomyopathy. J. of Cardiovasc. Trans. Res. 10, 348–358 (2017). https://doi.org/10.1007/s12265-017-9742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9742-4

Keywords

Navigation