Skip to main content

Advertisement

Log in

Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium (BP), are used to replace defective heart valves. However, valve failure can occur within 12–15 years due to calcification and/or progressive structural degeneration. We present a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of BP. We demonstrate that TRI-treated BP is more compliant than GLUT-treated BP. GLUT-treated BP exhibited permanent geometric deformation and complete alteration of apparent mechanical properties when subjected to induced static strain. TRI BP, on the other hand, did not exhibit such permanent geometric deformations or significant alterations of apparent mechanical properties. TRI BP also exhibited better resistance to enzymatic degradation in vitro and calcification in vivo when implanted subcutaneously in juvenile rats for up to 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–80.

    Article  PubMed  Google Scholar 

  2. Manji, R. A., Menkis, A. H., Ekser, B., & Cooper, D. K. (2012). Porcine bioprosthetic heart valves: the next generation. American Heart Journal, 164(2), 177–85.

    Article  PubMed  Google Scholar 

  3. Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–44.

    Article  PubMed  Google Scholar 

  4. Mohammadi, H., & Mequanint, K. (2011). Prosthetic aortic heart valves: modeling and design. Medical Engineering and Physics, 33(2), 131–47.

    Article  PubMed  Google Scholar 

  5. Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62(3), 359–71.

    Article  CAS  PubMed  Google Scholar 

  6. Wells, S. M., Sellaro, T., & Sacks, M. S. (2005). Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials, 26(15), 2611–9.

    Article  CAS  PubMed  Google Scholar 

  7. Eckert, C. E., Fan, R., Mikulis, B., Barron, M., Carruthers, C. A., Friebe, V. M., Vyavahare, N. R., & Sacks, M. S. (2013). On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1), 4653–60.

    Article  CAS  PubMed  Google Scholar 

  8. Sacks, M. S., David Merryman, W., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zilla, P., Brink, J., Human, P., & Bezuidenhout, D. (2008). Prosthetic heart valves: catering for the few. Biomaterials, 29(4), 385–406.

    Article  CAS  PubMed  Google Scholar 

  10. Aslam, A. K., Aslam, A. F., Vasavada, B. C., & Khan, I. A. (2007). Prosthetic heart valves: types and echocardiographic evaluation. International Journal of Cardiology, 122(2), 99–110.

    Article  PubMed  Google Scholar 

  11. Takkenberg, J. J., van Herwerden, L. A., Eijkemans, M. J., Bekkers, J. A., & Bogers, A. J. (2002). Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. European Journal of Cardio-Thoracic Surgery Official Journal of the European Association for Cardio-Thoracic Surgery, 21(4), 683–91. discussion 691.

    Article  CAS  PubMed  Google Scholar 

  12. Schoen, F. J., Tsao, J. W., & Levy, R. J. (1986). Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. The American Journal of Pathology, 123(1), 134–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schoen, F. J., Levy, R. J., Nelson, A. C., Bernhard, W. F., Nashef, A., & Hawley, M. (1985). Onset and progression of experimental bioprosthetic heart valve calcification. Laboratory Investigation A Journal of Technical Methods and Pathology, 52(5), 523–32.

    CAS  PubMed  Google Scholar 

  14. L.J. Strates, B., & Nimni, M. E. (1989). Calcification in cardiovascular tissues and bioprostheses, Biotechnology ed. Bova Rotan: CRC Press.

    Google Scholar 

  15. Rucker, R. B. (1974). Calcium binding to elastin. Adv. Exp. Med. Biol., 48, 185–209.

    Article  CAS  PubMed  Google Scholar 

  16. Perrotta, I., Russo, E., Camastra, C., Filice, G., Di Mizio, G., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., & Donato, G. (2011). New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology, 59(3), 504–13.

    Article  PubMed  Google Scholar 

  17. Gott, J. P., Girardot, M. N., Girardot, J. M., Hall, J. D., Whitlark, J. D., Horsley, W. S., Dorsey, L. M., Levy, R. J., Chen, W., Schoen, F. J., & Guyton, R. A. (1997). Refinement of the alpha aminooleic acid bioprosthetic valve anticalcification technique. The Annals of Thoracic Surgery, 64(1), 50–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. The Annals of Thoracic Surgery, 75(4), 1267–73.

    Article  PubMed  Google Scholar 

  19. Levy, R. J., Vyavahare, N., Ogle, M., Ashworth, P., Bianco, R., & Schoen, F. J. (2003). Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. The Journal of Heart Valve Disease, 12(2), 209–16. discussion 216.

    PubMed  Google Scholar 

  20. Vyavahare, N., Hirsch, D., Lerner, E., Baskin, J. Z., Schoen, F. J., Bianco, R., Kruth, H. S., Zand, R., & Levy, R. J. (1997). Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and Mechanisms, Circulation, 95(2), 479–88.

    CAS  PubMed  Google Scholar 

  21. Trantina-Yates, A. E., Human, P., & Zilla, P. (2003). Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. The Journal of Heart Valve Disease, 12(1), 93–100. discussion 100–1.

    PubMed  Google Scholar 

  22. Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., & Human, P. (2001). Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. Journal of Biomedical Materials Research, 56(1), 56–64.

    Article  CAS  PubMed  Google Scholar 

  23. Bezuidenhout, D., Oosthuysen, A., Human, P., Weissenstein, C., & Zilla, P. (2009). The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnology and Applied Biochemistry, 54(3), 133–40.

    Article  CAS  PubMed  Google Scholar 

  24. Wright, G., & de la Fuente, A. (2015). Effectiveness of anti-calcification technologies in a rabbit model. The Journal of Heart Valve Disease, 24(3), 386–92.

    PubMed  Google Scholar 

  25. Zilla, P., Weissenstein, C., Bracher, M., & Human, P. (2001). The anticalcific effect of glutaraldehyde detoxification on bioprosthetic aortic wall tissue in the sheep model. Journal of Cardiac Surgery, 16(6), 467–72.

    Article  CAS  PubMed  Google Scholar 

  26. Shang, H., Claessens, S. M., Tian, B., & Wright, G. A. (2017). Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. Journal of Materials Science Materials in Medicine, 28(1), 16.

    Article  PubMed  Google Scholar 

  27. Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., & Egorova, N. N. (2014). Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA, 312(13), 1323–9.

    Article  CAS  PubMed  Google Scholar 

  28. Singhal, P. (2013). Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomaterials, 2013, 1–16.

    Article  Google Scholar 

  29. Sellaro, T. L., Hildebrand, D., Lu, Q., Vyavahare, N., Scott, M., & Sacks, M. S. (2007). Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. Journal of Biomedical Materials Research. Part A, 80(1), 194–205.

    Article  PubMed  Google Scholar 

  30. Sun, W., Sacks, M., Fulchiero, G., Lovekamp, J., Vyavahare, N., & Scott, M. (2004). Response of heterograft heart valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research. Part A, 69(4), 658–69.

    Article  PubMed  Google Scholar 

  31. Smith, D. B., Sacks, M. S., Pattany, P. M., & Schroeder, R. (1997). High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. The Journal of Heart Valve Disease, 6(4), 424–32.

    CAS  PubMed  Google Scholar 

  32. Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedical Materials Research, 46(1), 44–50.

    Article  CAS  PubMed  Google Scholar 

  33. Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: the role of elastin. The Annals of Thoracic Surgery, 60(2 Suppl), S391–4.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, T. C., Midura, R. J., Hascall, V. C., & Vesely, I. (2001). The effect of elastin damage on the mechanics of the aortic valve. Journal of Biomechanics, 34(2), 203–10.

    Article  CAS  PubMed  Google Scholar 

  35. Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–23.

    Article  CAS  PubMed  Google Scholar 

  36. Christian, A. J., Lin, H., Alferiev, I. S., Connolly, J. M., Ferrari, G., Hazen, S. L., Ischiropoulos, H., & Levy, R. J. (2014). The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials, 35(7), 2097–102.

    Article  CAS  PubMed  Google Scholar 

  37. Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11(3–4), 231–47.

    CAS  PubMed  Google Scholar 

  38. Tripi, D. R., & Vyavahare, N. R. (2014). Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. Journal of Biomaterials Applications, 28(5), 757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, B., Lesicko, J., Sharma, M., Hill, M., Sacks, M. S., & Tunnell, J. W. (2015). Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomedicals Optics Express, 6(4), 1520–33.

    Article  Google Scholar 

  40. Grashow, J. S., Yoganathan, A. P., & Sacks, M. S. (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering, 34(2), 315–25.

    Article  PubMed  Google Scholar 

  41. Zhang, W., Feng, Y., Lee, C. H., Billiar, K. L., & Sacks, M. S. (2015). A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. Journal of Biomechanical Engineering, 137(6), 064501.

    Article  PubMed  Google Scholar 

  42. Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  43. Gratzer, P. F., & Lee, J. M. (2001). Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. Journal of Biomedical Materials Research, 58(2), 172–9.

    Article  CAS  PubMed  Google Scholar 

  44. Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765–73.

    Article  CAS  PubMed  Google Scholar 

  45. Tam, H., Zhang, W., Feaver, K. R., Parchment, N., Sacks, M. S., & Vyavahare, N. (2015). A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 66, 83–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trantina-Yates, A., Weissenstein, C., Human, P., & Zilla, P. (2001). Stentless bioprosthetic heart valve research: sheep versus primate model. The Annals of Thoracic Surgery, 71(5 Suppl), S422–7.

    Article  CAS  PubMed  Google Scholar 

  47. Martin, C., & Sun, W. (2013). Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomechanics and Modeling in Mechanobiology, 12(4), 645–55.

    Article  PubMed  Google Scholar 

  48. Zilla, P., Human, P., & Bezuidenhout, D. (2004). Bioprosthetic heart valves: the need for a quantum leap. Biotechnology and Applied Biochemistry, 40(Pt 1), 57–66.

    CAS  PubMed  Google Scholar 

  49. Girardot, J. M., & Girardot, M. N. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. The Journal of Heart Valve Disease, 5(5), 518–25.

    CAS  PubMed  Google Scholar 

  50. Isenburg, J. C., Karamchandani, N. V., Simionescu, D. T., & Vyavahare, N. R. (2006). Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials, 27(19), 3645–51.

    CAS  PubMed  Google Scholar 

  51. Chow, J. P., Simionescu, D. T., Warner, H., Wang, B., Patnaik, S. S., Liao, J., & Simionescu, A. (2013). Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials, 34(3), 685–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Source of Funding: This work was supported by the National Institutes of Health (R01HL108330 and P20GM103444) and Hunter Endowment to NRV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vyavahare.

Ethics declarations

Conflict of Interest

There are no disclosures or conflicts of interest with the presented study.

Human Subjects/Informed Consent Statement

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, H., Zhang, W., Infante, D. et al. Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties. J. of Cardiovasc. Trans. Res. 10, 194–205 (2017). https://doi.org/10.1007/s12265-017-9733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9733-5

Keywords

Navigation