Skip to main content

Advertisement

Log in

Intravascular Ultrasound Characterization of a Tissue-Engineered Vascular Graft in an Ovine Model

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Patients who undergo implantation of a tissue-engineered vascular graft (TEVG) for congenital cardiac anomalies are monitored with echocardiography, followed by magnetic resonance imaging or angiography when indicated. While these methods provide data regarding the lumen, minimal information regarding neotissue formation is obtained. Intravascular ultrasound (IVUS) has previously been used in a variety of conditions to evaluate the vessel wall. The purpose of this study was to evaluate the utility of IVUS for evaluation of TEVGs in our ovine model. Eight sheep underwent implantation of TEVGs either unseeded or seeded with bone marrow-derived mononuclear cells. Angiography, IVUS, and histology were directly compared. Endothelium, tunica media, and graft were identifiable on IVUS and histology at multiple time points. There was strong agreement between IVUS and angiography for evaluation of luminal diameter. IVUS offers a valuable tool to evaluate the changes within TEVGs, and clinical translation of this application is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

°C:

Degrees Celsius

CI:

Confidence interval

α-SMA:

Alpha smooth muscle actin

CaVC:

Caudal vena cava

CT:

Computed tomography

IF:

Immunofluorescence

IVUS:

Intravascular ultrasound

GMP:

Good Manufacturing Practice

kg:

Kilogram

MRI:

Magnetic resonance imaging

mg:

Milligram

mm:

Millimeter

μm:

Micrometer

PBS:

Phosphate buffered saline

PCLA:

Polycaprolactone and polylactic acid

PGA:

Polyglycolic acid

TEVG:

Tissue-engineered vascular graft

vWF:

von Willebrand factor

References

  1. Hoffman, J. I., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12), 1890–1900.

    Article  PubMed  Google Scholar 

  2. Simeone, R. M., Oster, M. E., Cassell, C. H., Armour, B. S., Gray, D. T., & Honein, M. A. (2014). Pediatric inpatient hospital resource use for congenital heart defects. Birth Defects Research. Part A, Clinical and Molecular Teratology, 100(12), 934–943. doi:10.1002/bdra.23262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Russo, C. A, Elixhauser, A. (2006). Hospitalizations for Birth Defects, 2004: Statistical Brief #24. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD).

  4. Shin’oka, T., Matsumura, G., Hibino, N., Naito, Y., Watanabe, M., Konuma, T., Sakamoto, T., Nagatsu, M., & Kurosawa, H. (2005). Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Journal of Thoracic and Cardiovascular Surgery, 129(6), 1330–1338. doi:10.1016/j.jtcvs.2004.12.047.

    Article  PubMed  Google Scholar 

  5. Hibino, N., McGillicuddy, E., Matsumura, G., Ichihara, Y., Naito, Y., Breuer, C., & Shinoka, T. (2010). Late-term results of tissue-engineered vascular grafts in humans. Journal of Thoracic and Cardiovascular Surgery, 139(2), 431–436. doi:10.1016/j.jtcvs.2009.09.057. 436 e431-432.

    Article  PubMed  Google Scholar 

  6. Pedra, C. A. C., Fleishman, C., Pedra, S. F., & Cheatham, J. P. (2011). New imaging modalities in the catheterization laboratory. Current Opinion in Cardiology, 26(2), 86–93. doi:10.1097/HCO.0b013e3283437fb4.

    Article  PubMed  Google Scholar 

  7. Diethrich, E. B., Irshad, K., & Reid, D. B. (2006). Virtual histology and color flow intravascular ultrasound in peripheral interventions. Seminars in Vascular Surgery, 19(3), 155–162. doi:10.1053/j.semvascsurg.2006.06.001.

    Article  PubMed  Google Scholar 

  8. Lee, J. T., Fang, T. D., & White, R. A. (2006). Applications of intravascular ultrasound in the treatment of peripheral occlusive disease. Seminars in Vascular Surgery, 19(3), 139–144. doi:10.1053/j.semvascsurg.2006.06.004.

    Article  PubMed  Google Scholar 

  9. Pearce, B. J., & Jordan, W. D., Jr. (2009). Using IVUS during EVAR and TEVAR: improving patient outcomes. Seminars in Vascular Surgery, 22(3), 172–180. doi:10.1053/j.semvascsurg.2009.07.009.

    Article  PubMed  Google Scholar 

  10. Wallace, G. A., Starnes, B. W., Hatsukami, T. S., Sobel, M., Singh, N., & Tran, N. T. (2015). Intravascular ultrasound is a critical tool for accurate endograft sizing in the management of blunt thoracic aortic injury. Journal of Vascular Surgery, 61(3), 630–635. doi:10.1016/j.jvs.2014.10.014.

    Article  PubMed  Google Scholar 

  11. Marrocco, C. J., Jaber, R., White, R. A., Walot, I., DeVirgilio, C., Donayre, C. E., & Kopchok, G. (2012). Intravascular ultrasound. Seminars in Vascular Surgery, 25(3), 144–152. doi:10.1053/j.semvascsurg.2012.07.006.

    Article  PubMed  Google Scholar 

  12. Park, S. J., Kang, S. J., Virmani, R., Nakano, M., & Ueda, Y. (2012). In-stent neoatherosclerosis: a final common pathway of late stent failure. Journal of the American College of Cardiology, 59(23), 2051–2057. doi:10.1016/j.jacc.2011.10.909.

    Article  PubMed  Google Scholar 

  13. Gogas, B. D., Farooq, V., Serruys, P. W., & Garcia-Garcia, H. M. (2011). Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond. The International Journal of Cardiovascular Imaging, 27(2), 225–237. doi:10.1007/s10554-010-9791-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nasu, K., Tsuchikane, E., Katoh, O., Vince, D. G., Margolis, P. M., Virmani, R., Surmely, J. F., Ehara, M., Kinoshita, Y., Fujita, H., Kimura, M., Asakura, K., Asakura, Y., Matsubara, T., Terashima, M., & Suzuki, T. (2008). Impact of intramural thrombus in coronary arteries on the accuracy of tissue characterization by in vivo intravascular ultrasound radiofrequency data analysis. American Journal of Cardiology, 101(8), 1079–1083. doi:10.1016/j.amjcard.2007.11.064.

    Article  PubMed  Google Scholar 

  15. Nair, A., Margolis, M. P., Kuban, B. D., & Vince, D. G. (2007). Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention, 3(1), 113–120.

    PubMed  Google Scholar 

  16. Nair, A., Kuban, B. D., Tuzcu, E. M., Schoenhagen, P., Nissen, S. E., & Vince, D. G. (2002). Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, 106(17), 2200–2206.

    Article  PubMed  Google Scholar 

  17. Garcia-Garcia, H. M., Gogas, B. D., Serruys, P. W., & Bruining, N. (2011). IVUS-based imaging modalities for tissue characterization: similarities and differences. The International Journal of Cardiovascular Imaging, 27(2), 215–224. doi:10.1007/s10554-010-9789-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Madssen, E., Moholdt, T., Videm, V., Wisloff, U., Hegbom, K., & Wiseth, R. (2014). Coronary atheroma regression and plaque characteristics assessed by grayscale and radiofrequency intravascular ultrasound after aerobic exercise. The American Journal of Cardiology, 114(10), 1504–1511. doi:10.1016/j.amjcard.2014.08.012.

    Article  PubMed  Google Scholar 

  19. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A., & Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1262–1275.

    Article  CAS  PubMed  Google Scholar 

  20. Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., Serruys, P. W., & Investigators, P. (2011). A prospective natural-history study of coronary atherosclerosis. New England Journal of Medicine, 364(3), 226–235. doi:10.1056/NEJMoa1002358.

    Article  CAS  PubMed  Google Scholar 

  21. Fatakdawala, H., Gorpas, D., Bishop, J. W., Bec, J., Ma, D., Southard, J. A., Margulies, K. B., & Marcu, L. (2015). Fluorescence lifetime imaging combined with conventional intravascular ultrasound for enhanced assessment of atherosclerotic plaques: an ex vivo study in human coronary arteries. Journal of Cardiovascular Translational Research, 8(4), 253–263. doi:10.1007/s12265-015-9627-3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ishii, M., Kato, H., Kawano, T., Akagi, T., Maeno, Y., Sugimura, T., Hashino, K., & Takagishi, T. (1995). Evaluation of pulmonary artery histopathologic findings in congenital heart disease: an in vitro study using intravascular ultrasound imaging. Journal of the American College of Cardiology, 26(1), 272–276.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, J., Shiota, T., Omoto, R., Zhou, X., Kyo, S., Ishii, M., Rice, M. J., & Sahn, D. J. (1997). Intravascular ultrasound assessment of regional aortic wall stiffness, distensibility, and compliance in patients with coarctation of the aorta. American Heart Journal, 134(1), 93–98.

    Article  CAS  PubMed  Google Scholar 

  24. Day, R. W., & Tani, L. Y. (1997). Pulmonary intravascular ultrasound in infants and children with congenital heart disease. Catheterization and Cardiovascular Diagnosis, 41(4), 395–398.

    Article  CAS  PubMed  Google Scholar 

  25. Berger, R. M., Cromme-Dijkhuis, A. H., Hop, W. C., Kruit, M. N., & Hess, J. (2002). Pulmonary arterial wall distensibility assessed by intravascular ultrasound in children with congenital heart disease: an indicator for pulmonary vascular disease? Chest, 122(2), 549–557.

    Article  PubMed  Google Scholar 

  26. Veeram Reddy, S. R., Welch, T. R., Wang, J., Richardson, J. A., Forbess, J. M., Riegel, M., & Nugent, A. W. (2015). A novel design biodegradable stent for use in congenital heart disease: mid-term results in rabbit descending aorta. Catheterization and Cardiovascular Interventions, 85(4), 629–639. doi:10.1002/ccd.25648.

    Article  PubMed  Google Scholar 

  27. Hibino, N., Nalbandian, A., Devine, L., Martinez, R. S., McGillicuddy, E., Yi, T., Karandish, S., Ortolano, G. A., Shin’oka, T., Snyder, E., & Breuer, C. K. (2011). Comparison of human bone marrow mononuclear cell isolation methods for creating tissue-engineered vascular grafts: novel filter system versus traditional density centrifugation method. Tissue Engineering. Part C, Methods, 17(10), 993–998. doi:10.1089/ten.TEC.2011.0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hibino, N., Yi, T., Duncan, D. R., Rathore, A., Dean, E., Naito, Y., Dardik, A., Kyriakides, T., Madri, J., Pober, J. S., Shinoka, T., & Breuer, C. K. (2011). A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB Journal, 25(12), 4253–4263. doi:10.1096/fj.11-186585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khosravi, R., Miller, K. S., Best, C. A., Shih, Y. C., Lee, Y. U., Yi, T., Shinoka, T., Breuer, C. K., & Humphrey, J. D. (2015). Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts 2 years post-implantation. Tissue Engineering Part A, 21(9–10), 1529–1538. doi:10.1089/ten.tea.2014.0524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Ditzhuijzen, N. S., van den Heuvel, M., Sorop, O., van Duin, R. W., Krabbendam-Peters, I., van Haeren, R., Ligthart, J. M., Witberg, K. T., Duncker, D. J., Regar, E., van Beusekom, H. M., & van der Giessen, W. J. (2011). Invasive coronary imaging in animal models of atherosclerosis. Netherlands Heart Journal, 19(10), 442–446. doi:10.1007/s12471-011-0187-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Comparative Mouse Phenotyping and Pathology Shared Resource, Department of Veterinary Biosciences, and the Comprehensive Cancer Center at the Ohio State University performed tissue embedding, sectioning, and H&E staining. The Morphology Core at Nationwide Children’s Hospital performed Masson’s Trichrome staining. Assistance with biostatistical analysis was provided by Yongjie Miao of the Biostatistics Core from the Research Institute at Nationwide Children’s Hospital. We would like to acknowledge the contributions of our animal care staff, veterinary staff, and interventional cardiology team, without whom the work performed would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Breuer.

Ethics declarations

Sources of Funding

Funding for this study was provided by NIH R01 HL128847 as well as internal sources from Nationwide Children’s Hospital, Columbus, OH to C.K.B. and T.S. The work presented was also supported by T32 OD010429-13 to ESC and T32AI106704 to EAO. The Comparative Mouse Phenotyping and Pathology Shared Resource is supported in part by grant P30 CA016058.

Disclosures

Support for graft production for this study was provided by Gunze Limited. Christopher Breuer, MD is also on the scientific advisory board for Cook Biomedical and is the founder of Lyst Therapeutics. The remaining authors have no conflicts of interest.

Human Subjects/Animal Subjects Statement

No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Victoria K. Pepper and Elizabeth S. Clark are shared first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepper, V.K., Clark, E.S., Best, C.A. et al. Intravascular Ultrasound Characterization of a Tissue-Engineered Vascular Graft in an Ovine Model. J. of Cardiovasc. Trans. Res. 10, 128–138 (2017). https://doi.org/10.1007/s12265-016-9725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9725-x

Keywords

Navigation