Skip to main content


Log in

CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript


Chemokines are involved in the remodeling of the heart; however, their significance as biomarkers in heart failure is unknown. We observed that circulating CXCR3 receptor chemokines CXCL9 and CXCL10 in a rat model of heart failure were increased 1 week after myocardial infarction. CXCL10 was also increased in both remote and infarcted regions of the heart and remained elevated at 16 weeks; CXCL9 was elevated in the remote area at 1 week. In humans, hierarchical clustering and principal component analysis revealed that circulating CXCL10, MIP-1α, and CD40 ligand were the best indicators for differentiating healthy and heart failure subjects. Serum CXCL10 levels were increased in patients with symptomatic heart failure as indexed by NYHA classification II through IV. The presence of CXCL10, MIP-1α, and CD40 ligand appears to be dominant in patients with advanced heart failure. These findings identify a distinct profile of inflammatory mediators in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others



American College of Cardiology Foundation/American Heart Association


B-type natriuretic peptide


Cluster of differentiation 40


Chemokine (C-X-C motif) ligand


Chemokine (C-X-C motif) receptor


Flemish Study on Environment, Genes, and Health Outcomes


Heart failure


Interferon gamma




Interferon gamma-induced protein 10


Left anterior descending artery


Left ventricle/ventricular


Monocyte chemoattractant protein 1


Myocardial infarction


Macrophage migration inhibitory factor


Macrophage inflammatory protein-1 alpha


New York Heart Association


N-terminal of the prohormone brain natriuretic peptide


Principal component analysis


Stromal cell-derived factor 1


Tissue inhibitor of metalloproteinases-1


Tumor necrosis factor alpha


TRanslational Initiative on Unique and novel strategies for Management of Patients with Heart failure


  1. Sidney, S., Rosamond, W. D., Howard, V. J., Luepker, R. V., National Forum for Heart, D, & Stroke, P. (2013). The “heart disease and stroke statistics--2013 update” and the need for a national cardiovascular surveillance system. Circulation, 127(1), 21–23. doi:10.1161/CIRCULATIONAHA.112.155911.

    Article  PubMed  Google Scholar 

  2. Moreno, V., Hernandez-Romero, D., Vilchez, J. A., Garcia-Honrubia, A., Cambronero, F., Casas, T., et al. (2010). Serum levels of high-sensitivity troponin T: a novel marker for cardiac remodeling in hypertrophic cardiomyopathy. Journal of Cardiac Failure, 16(12), 950–956. doi:10.1016/j.cardfail.2010.07.245.

    Article  CAS  PubMed  Google Scholar 

  3. Gaggin, H. K., & Januzzi, J. L., Jr. (2013). Biomarkers and diagnostics in heart failure. Biochimica et Biophysica Acta, 1832(12), 2442–2450. doi:10.1016/j.bbadis.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

  4. Montoro-Garcia, S., Hernandez-Romero, D., Jover, E., Garcia-Honrubia, A., Vilchez, J. A., Casas, T., et al. (2012). Growth differentiation factor-15, a novel biomarker related with disease severity in patients with hypertrophic cardiomyopathy. European Journal of Internal Medicine, 23(2), 169–174. doi:10.1016/j.ejim.2011.08.022.

    Article  CAS  PubMed  Google Scholar 

  5. Maisel, A., Mueller, C., Nowak, R., Peacock, W. F., Landsberg, J. W., Ponikowski, P., et al. (2010). Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. Journal of the American College of Cardiology, 55(19), 2062–2076. doi:10.1016/j.jacc.2010.02.025.

    Article  CAS  PubMed  Google Scholar 

  6. Pfisterer, M., Buser, P., Rickli, H., Gutmann, M., Erne, P., Rickenbacher, P., et al. (2009). BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA, 301(4), 383–392. doi:10.1001/jama.2009.2.

    Article  CAS  PubMed  Google Scholar 

  7. Dickstein, K., Cohen-Solal, A., Filippatos, G., McMurray, J. J., Ponikowski, P., & Poole-Wilson, P. A. (2008). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). European Journal of Heart Failure, 10(10), 933–989. doi:10.1016/j.ejheart.2008.08.005.

    Article  PubMed  Google Scholar 

  8. Desai, A. S. (2013). Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are not useful in heart failure management: the art of medicine remains long. Circulation, 127(4), 509–516. doi:10.1161/CIRCULATIONAHA.112.120493. discussion 516.

    Article  PubMed  Google Scholar 

  9. Rodeheffer, R. J. (2004). Measuring plasma B-type natriuretic peptide in heart failure: good to go in 2004? Journal of the American College of Cardiology, 44(4), 740–749. doi:10.1016/j.jacc.2004.03.082.

    CAS  PubMed  Google Scholar 

  10. Richards, A. M. (2007). Variability of NT-proBNP levels in heart failure: implications for clinical application. Heart, 93(8), 899–900. doi:10.1136/hrt.2006.110643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boerrigter, G., Costello-Boerrigter, L. C., & Burnett, J. C., Jr. (2009). Natriuretic peptides in the diagnosis and management of chronic heart failure. Heart Failure Clinics, 5(4), 501–514. doi:10.1016/j.hfc.2009.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Madamanchi, C., Alhosaini, H., Sumida, A., & Runge, M. S. (2014). Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. International Journal of Cardiology, 176(3), 611–617. doi:10.1016/j.ijcard.2014.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Writing Committee, M., Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation, 128(16), e240–327. doi:10.1161/CIR.0b013e31829e8776.

    Article  Google Scholar 

  14. Altara, R., Gu, Y. M., Struijker-Boudier, H. A., Thijs, L., Staessen, J. A., & Blankesteijn, W. M. (2015). Left ventricular dysfunction and CXCR3 ligands in hypertension: from animal experiments to a population-based pilot study. PloS One, 10(10), e0141394. doi:10.1371/journal.pone.0141394.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Altara, R., Manca, M., Brandao, R.D., Zeidan, A., Booz, G.W., & zouein, F. A. (2016). Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clinical Science (London, England: 1979), 130(7).

  16. Daskalopoulos, E.P., Vilaeti, A.D., Barka, E., Mantzouratou, P., Kouroupis, D., Kontonika, M., et al. (2015). Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors:1–9.

  17. Higuchi, T., Nekolla, S. G., Jankaukas, A., Weber, A. W., Huisman, M. C., Reder, S., et al. (2007). Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. Journal of Nuclear Medicine, 48(2), 288–294.

    PubMed  Google Scholar 

  18. Kuznetsova, T., Mischak, H., Mullen, W., & Staessen, J. A. (2012). Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. European Heart Journal, 33(18), 2342–2350. doi:10.1093/eurheartj/ehs185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuznetsova, T., Herbots, L., Lopez, B., Jin, Y., Richart, T., Thijs, L., et al. (2009). Prevalence of left ventricular diastolic dysfunction in a general population. Circulation. Heart Failure, 2(2), 105–112. doi:10.1161/CIRCHEARTFAILURE.108.822627.

    Article  PubMed  Google Scholar 

  20. Altara, R., Manca, M., Hessel, M. H., Janssen, B. J., Struijker-Boudier, H. H., Hermans, R. J., et al. (2014). Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample. BMC Biotechnology, 14, 63. doi:10.1186/1472-6750-14-63.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Battes, L. C., Caliskan, K., Rizopoulos, D., Constantinescu, A. A., Robertus, J. L., Akkerhuis, M., et al. (2015). Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients. Transplantation, 99(3), 580–585. doi:10.1097/TP.0000000000000378.

    Article  CAS  PubMed  Google Scholar 

  22. Bernhard, O. K., Mathias, R. A., Barnes, T. W., & Simpson, R. J. (2011). A fluorescent microsphere-based method for assay of multiple analytes in plasma. Methods in Molecular Biology, 728, 195–206. doi:10.1007/978-1-61779-068-3_12.

    Article  CAS  PubMed  Google Scholar 

  23. Huynh, K., Van Tassell, B., & Chow, S. L. (2015). Predicting therapeutic response in patients with heart failure: the story of C-reactive protein. Expert Review of Cardiovascular Therapy, 13(2), 153–161. doi:10.1586/14779072.2015.1000307.

    Article  CAS  PubMed  Google Scholar 

  24. Savarese, G., Rosano, G. M., Parente, A., D’Amore, C., Reiner, M. F., Camici, G. G., et al. (2014). Reduction of C-reactive protein is not associated with reduced cardiovascular risk and mortality in patients treated with statins. A meta-analysis of 22 randomized trials. International Journal of Cardiology, 177(1), 152–160. doi:10.1016/j.ijcard.2014.09.028.

    Article  PubMed  Google Scholar 

  25. Altara, R., Manca, M., Sabra, R., Eid, A. A., Booz, G. W., & Zouein, F. A. (2015). Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Failure Reviews. doi:10.1007/s10741-015-9513-8.

    PubMed  Google Scholar 

  26. Schoemaker, R. G., Debets, J. J., Struyker-Boudier, H. A., & Smits, J. F. (1991). Delayed but not immediate captopril therapy improves cardiac function in conscious rats, following myocardial infarction. Journal of Molecular and Cellular Cardiology, 23(2), 187–197.

    Article  CAS  PubMed  Google Scholar 

  27. Yan, X., Shichita, T., Katsumata, Y., Matsuhashi, T., Ito, H., Ito, K., et al. (2012). Deleterious effect of the IL-23/IL-17A axis and gammadeltaT cells on left ventricular remodeling after myocardial infarction. Journal of the American Heart Association, 1(5), e004408. doi:10.1161/JAHA.112.004408.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Raphael, C., Briscoe, C., Davies, J., Ian Whinnett, Z., Manisty, C., Sutton, R., et al. (2007). Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart, 93(4), 476–482. doi:10.1136/hrt.2006.089656.

    Article  PubMed  Google Scholar 

  29. Goldman, L., Hashimoto, B., Cook, E. F., & Loscalzo, A. (1981). Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation, 64(6), 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  30. Altara, R., Manca, M., Hermans, K. C., Daskalopoulos, E. P., Brunner-La Rocca, H. P., Hermans, R. J., et al. (2015). Diurnal rhythms of serum and plasma cytokine profiles in healthy elderly individuals assessed using membrane based multiplexed immunoassay. Journal of Translational Medicine, 13, 129. doi:10.1186/s12967-015-0477-1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blossom, S. J., Rau, J. L., Best, T. H., Bornemeier, R. A., & Hobbs, C. A. (2013). Increased maternal cytokine production and congenital heart defects. Journal of Reproductive Immunology, 97(2), 204–210. doi:10.1016/j.jri.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  32. Fujiu, K., Wang, J., & Nagai, R. (2014). Cardioprotective function of cardiac macrophages. Cardiovascular Research, 102(2), 232–239. doi:10.1093/cvr/cvu059.

    Article  CAS  PubMed  Google Scholar 

  33. Hausding, M., Jurk, K., Daub, S., Kroller-Schon, S., Stein, J., Schwenk, M., et al. (2013). CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Research in Cardiology, 108(6), 386. doi:10.1007/s00395-013-0386-5.

    Article  PubMed  Google Scholar 

  34. Kaptoge, S., Seshasai, S. R., Gao, P., Freitag, D. F., Butterworth, A. S., Borglykke, A., et al. (2014). Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. European Heart Journal, 35(9), 578–589. doi:10.1093/eurheartj/eht367.

    Article  CAS  PubMed  Google Scholar 

  35. Fu, W., Zhu, J., Qiu, Y., & Li, W. (2013). Induction of CD4 + CD25+ T cells and control of cardiac allograft rejection by CD40/CD40L costimulatory pathway blockade in mice. Transplantation Proceedings, 45(2), 611–617. doi:10.1016/j.transproceed.2012.10.044.

    Article  CAS  PubMed  Google Scholar 

  36. Krill, K. T., Csencsits-Smith, K., Wood, S. C., Faust, S., Lu, G., & Bishop, D. K. (2013). Glucocorticoid-induced TNFR-related protein stimulation reverses cardiac allograft acceptance induced by CD40-CD40L blockade. Clinical & Developmental Immunology, 2013, 986859. doi:10.1155/2013/986859.

    Article  Google Scholar 

  37. Krintus, M., Kozinski, M., Kubica, J., & Sypniewska, G. (2014). Critical appraisal of inflammatory markers in cardiovascular risk stratification. Critical Reviews in Clinical Laboratory Sciences, 51(5), 263–279. doi:10.3109/10408363.2014.913549.

    Article  CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Dr. F.A. Zouein for the thoughtful discussion on this study. We are appreciative of the outstanding contribution of Dr. Joke Orsel in helping with the ELISA assay.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Raffaele Altara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human Subjects/Informed Consent

The recruitment of subjects was performed according to the Medical Ethical Committees of Groningen and Maastricht University, The Netherlands, and in accordance with of the Declaration of Helsinki of 1975.

Animal Studies

All experimental and surgical procedures were approved by the Institutional Council on Animal Care and Use of the Maastricht University and complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Sources of Funding

This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (, project TRIUMPH grant 01C-103, and supported by the Dutch Heart Foundation.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Shown are the cytokines that were most increased in terms of fold-change for heart failure patients enrolled in the TRIUMPH cohort compared to healthy individuals. Serum levels of the cytokines were analyzed by multiplex membrane-based immunoassay. (PDF 80 kb)

Supplementary Figure 2

A scatter plot showing the correlation between the ELISA and membrane-based assay for CXCL10 determination in TRIUMPH patients. (PDF 36 kb)

Supplementary Figure 3a

No difference was observed between ischemic and non-ischemic heart failure patients enrolled in the TRIUMPH cohort in either (A) CXCL10 or (B) NT-proBNP levels. Data are shown as box and whiskers plots according to the Tukey method. (PDF 39 kb)

Supplementary Figure 3b

(PDF 41 kb)

Supplementary Table 1

Shown are the loading values for component 1 and 2 determined from the principal component analysis of the circulating inflammatory profile of heart failure patients from the TRIUMPH cohort compared to healthy subjects. (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altara, R., Manca, M., Hessel, M.H. et al. CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study. J. of Cardiovasc. Trans. Res. 9, 302–314 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: