Skip to main content

Advertisement

Log in

Why Is Infarct Expansion Such an Elusive Therapeutic Target?

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Myocardial infarct expansion has been associated with an increased risk of infarct rupture and progression to heart failure, motivating therapies such as infarct restraint and polymer injection that aim to limit infarct expansion. However, an exhaustive review of quantitative studies of infarct remodeling reveals that only half found chronic in-plane expansion, and many reported in-plane compaction. Using a finite element model, we demonstrate that the balance between scar stiffening due to collagen accumulation and increased wall stresses due to infarct thinning can produce either expansion or compaction in the pressurized heart—potentially explaining variability in the literature—and that loaded dimensions are much more sensitive to changes in thickness than in stiffness. Our analysis challenges the concept that in-plane expansion is a central feature of post-infarction remodeling; rather, available data suggest that radial thinning is the dominant process during infarct healing and may be an attractive therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

LV:

Left ventricle

FEM:

Finite element model

References

  1. Sharpe, N. (1992). Ventricular remodeling following myocardial infarction. The American Journal of Cardiology, 70, 20–6.

    Article  Google Scholar 

  2. Hutchins, G. M., & Bulkley, B. H. (1978). Infarct expansion versus extension: two different complications of acute myocardial infarction. The American Journal of Cardiology, 41, 1127–32.

    Article  CAS  PubMed  Google Scholar 

  3. Schuster, E. H., & Bulkley, B. H. (1979). Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation, 60, 1532–8.

    Article  CAS  PubMed  Google Scholar 

  4. Eaton, L. W., Weiss, J. L., Bulkley, B. H., Garrison, J. B., & Weisfeldt, M. L. (1979). Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. The New England Journal of Medicine, 300, 57–62.

    Article  CAS  PubMed  Google Scholar 

  5. Erlebacher, J. A., Weiss, J. L., Weisfeldt, M. L., & Bulkley, B. H. (1984). Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. Journal of the American College of Cardiology, 4, 201–8.

    Article  CAS  PubMed  Google Scholar 

  6. Pirolo, J. S., Hutchins, G. M., & Moore, G. W. (1986). Infarct expansion: pathologic analysis of 204 patients with a single myocardial infarct. Journal of the American College of Cardiology, 7, 349–54.

  7. Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L., & Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201.

    Article  CAS  PubMed  Google Scholar 

  8. Olivetti, G., Capasso, J. M., Sonnenblick, E. H., & Anversa, P. (1990). Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circulation Research, 67, 23–34.

    Article  CAS  PubMed  Google Scholar 

  9. Fishbein, M. C., Maclean, D., & Maroko, P. R. (1978). Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. The American Journal of Pathology, 90, 57–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–53.

    Article  CAS  PubMed  Google Scholar 

  11. Laeremans, H., Hackeng, T. M., van Zandvoort, M. A. M. J., Thijssen, V. L. J. L., Janssen, B. J. A., Ottenheijm, H. C. J., et al. (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation, 124, 1626–35.

    Article  CAS  PubMed  Google Scholar 

  12. Van den Borne, S. W. M., van de Schans, V. A., Strzelecka, A. E., Vervoort-Peters, H. T. M., Lijnen, P. M., Cleutjens, J. P. M., et al. (2009). Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovascular Research, 84, 273–82.

    Article  PubMed  Google Scholar 

  13. Fomovsky, G. M., & Holmes, J. W. (2010). Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. American Journal of Physiology. Heart and Circulatory Physiology, 298, H221–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Holmes, J. W., Yamashita, H., Waldman, L. K., & Covell, J. W. (1994). Scar remodeling and transmural deformation after infarction in the pig. Circulation, 90, 411–20.

    Article  CAS  PubMed  Google Scholar 

  15. Clarke, S. A., Ghanta, R. K., Ailawadi, G., & Holmes, J. W. (2013). Cardiac restraint and support following myocardial infarction. In: Cardiovascular and Cardiac Therapuetic Devices. Berlin Heidelberg: Springer-Verlag, 169-206.

  16. Gorman, R. C., Jackson, B. M., Burdick, J. A., & Gorman, J. H. (2011). Infarct restraint to limit adverse ventricular remodeling. Journal of Cardiovascular Translational Research, 4, 73–81.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ghanta, R. K., Lee, L. S., Umakanthan, R., Laurence, R. G., Fox, J. A., Bolman, R. M., et al. (2008). Real-time adjustment of ventricular restraint therapy in heart failure. European Journal of Cardio-Thoracic Surgery, 34, 1136–40.

  18. Fomovsky, G. M., Clark, S. A., Parker, K. M., Ailawadi, G., & Holmes, J. W. (2012). Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circulation Heart Failure, 5, 515–22.

  19. Rane, A. A., & Christman, K. L. (2011). Biomaterials for the treatment of myocardial infarction: a 5-year update. Journal of the American College of Cardiology, 58, 2615–29.

  20. Jugdutt, B. I. (2003). Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets, 3, 1–30.

  21. Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: finite elements for biomechanics. Journal of Biomechanical Engineering, 134, 011005-1-10.

  22. Herz, S. L., Ingrassia, C. M., Homma, S., Costa, K. D., & Holmes, J. W. (2005). Parameterization of left ventricular wall motion for detection of regional ischemia. Annals of Biomedical Engineering, 33, 912–9.

    Article  PubMed  Google Scholar 

  23. Omens, J. H., MacKenna, D. A., & McCulloch, A. D. (1993). Measurement of strain and analysis of stress in resting rat left ventricular myocardium. Journal of Biomechanics, 26, 665–76.

    Article  CAS  PubMed  Google Scholar 

  24. Vokonas, P. S., Pirzada, F., & Hood, W. B. (1976). Experimental myocardial infarction: XII. Dynamic changes in segmental mechanical behavior of infarcted and non-infarcted myocardium. The American Journal of Cardiology, 37, 853–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lew, W. Y., Chen, Z. Y., Guth, B., & Covell, J. W. (1985). Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circulation Research, 56, 351–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mehta, P. M., Alker, K. J., & Kloner, R. A. (1988). Functional infarct expansion, left ventricular dilation and isovolumic relaxation time after coronary occlusion: a two-dimensional echocardiographic study. Journal of the American College of Cardiology, 11, 630–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kass, D. A., Maughan, W. L., Ciuffo, A., Graves, W., Healy, B., & Weisfeldt, M. L. (1988). Disproportionate epicardial dilation after transmural infarction of the canine left ventricle: acute and chronic differences. Journal of the American College of Cardiology, 11, 177–85.

    Article  CAS  PubMed  Google Scholar 

  28. Villarreal, F. J., Lew, W. Y., Waldman, L. K., & Covell, J. W. (1991). Transmural myocardial deformation in the ischemic canine left ventricle. Circulation Research, 68, 368–81.

    Article  CAS  PubMed  Google Scholar 

  29. Brown, E. J., Swinford, R. D., Gadde, P., & Lillis, O. (1991). Acute effects of delayed reperfusion on myocardial infarct shape and left ventricular volume: a potential mechanism of additional benefits from thrombolytic therapy. Journal of the American College of Cardiology, 17, 1641–50.

    Article  PubMed  Google Scholar 

  30. Crozatier, B., Ross, J., Franklin, D., Bloor, C. M., White, F. C., Tomoike, H., et al. (1978). Myocardial infarction in the baboon: regional function and the collateral circulation. The American Journal of Physiology, 235, H413–21.

    CAS  PubMed  Google Scholar 

  31. McKay, R. G., Pfeffer, M. A., Pasternak, R. C., Markis, J. E., Come, P. C., Nakao, S., et al. (1986). Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation, 74, 693–702.

    Article  CAS  PubMed  Google Scholar 

  32. Jugdutt, B. I., Schwarz-Michorowski, B. L., & Khan, M. I. (1992). Effect of long-term captopril therapy on left ventricular remodeling and function during healing of canine myocardial infarction. Journal of the American College of Cardiology, 19, 713–21.

    Article  CAS  PubMed  Google Scholar 

  33. Nahrendorf, M., Wiesmann, F., Hiller, K. H., Hu, K., Waller, C., Ruff, J., et al. (2001). Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. Journal of Magnetic Resonance Imaging, 14, 547–55.

  34. Fieno, D. S., Hillenbrand, H. B., Rehwald, W. G., Harris, K. R., Decker, R. S., Parker, M. A., et al. (2004). Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. Journal of the American College of Cardiology, 43, 2124–31.

    Article  PubMed  Google Scholar 

  35. Blom, A. S., Pilla, J. J., Arkles, J., Dougherty, L., Ryan, L. P., Gorman, J. H., et al. (2007). Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. The Annals of Thoracic Surgery, 84, 2004–10.

    Article  PubMed  Google Scholar 

  36. Yankey, G. K., Li, T., Kilic, A., Cheng, G., Satpute, A., Savai, K., et al. (2008). Regional remodeling strain and its association with myocardial apoptosis after myocardial infarction in an ovine model. The Journal of Thoracic and Cardiovascular Surgery, 135, 991–998.e2.

  37. Morita, M., Eckert, C. E., Matsuzaki, K., Noma, M., Ryan, L. P., Burdick, J. A., et al. (2011). Modification of infarct material properties limits adverse ventricular remodeling. The Annals of Thoracic Surgery, 92, 617–24.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gottlieb, S. O., Becker, L. C., Weiss, J. L., Shapiro, E. P., Chandra, N. C., Flaherty, J. T., et al. (1988). Nifedipine in acute myocardial infarction: an assessment of left ventricular function, infarct size, and infarct expansion. A double blind, randomised, placebo controlled trial. Heart, 59, 411–8.

    Article  CAS  Google Scholar 

  39. Jugdutt, B. J. (1990). Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clinical Cardiology, 13, 28–40.

    Article  CAS  PubMed  Google Scholar 

  40. Jugdutt, B. I., Khan, M. I., Jugdutt, S. J., & Blinston, G. E. (1996). Effect of prolonged inotropic stimulation on ventricular remodeling during healing after myocardial infarction in the dog: mechanistic insights. Journal of the American College of Cardiology, 27, 1787–95.

    Article  CAS  PubMed  Google Scholar 

  41. Jackson, B. M., Gorman, J. H., Moainie, S. L., Guy, T. S., Narula, N., Narula, J., et al. (2002). Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. Journal of the American College of Cardiology, 40, 1160–7.

    Article  PubMed  Google Scholar 

  42. Mukherjee, R., Brinsa, T. A., Dowdy, K. B., Scott, A. A., Baskin, J. M., Deschamps, A. M., et al. (2003). Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation, 107, 618–25.

  43. Ahmet, I., Krawczyk, M., Heller, P., Moon, C., Lakatta, E. G., & Talan, M. I. (2004). Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation, 110, 1083–90.

    Article  CAS  PubMed  Google Scholar 

  44. Ahmet, I., Lakatta, E. G., & Talan, M. I. (2005). Pharmacological stimulation of beta2-adrenergic receptors (beta2AR) enhances therapeutic effectiveness of beta1AR blockade in rodent dilated ischemic cardiomyopathy. Heart Failure Reviews, 10, 289–96.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmet, I., Spangler, E., Shukitt-Hale, B., Joseph, J. A., Ingram, D. K., & Talan, M. (2009). Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PloS One, 4, e7975.

  46. Ahmet, I., Turner, T., Lakatta, E. G., & Talan, M. I. (2012). Fenoterol enantiomers do not possess beneficial therapeutic properties of their racemic mixture in the rat model of post myocardial infarction dilated cardiomyopathy. Cardiovascular Drugs and Therapy, 26, 101–8.

  47. Ahmet, I., Tae, H.-J., Brines, M., Cerami, A., Lakatta, E. G., & Talan, M. I. (2013). Chronic administration of small nonerythropoietic peptide sequence of erythropoietin effectively ameliorates the progression of postmyocardial infarction-dilated cardiomyopathy. The Journal of Pharmacology and Experimental Therapeutics, 345, 446–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G., & Talan, M. (2005). Cardioprotection by intermittent fasting in rats. Circulation, 112, 3115–21.

    Article  PubMed  Google Scholar 

  49. Roberts, C. S., Maclean, D., Maroko, P., & Kloner, R. A. (1984). Early and late remodeling of the left ventricle after acute myocardial infarction. The American Journal of Cardiology, 54, 407–10.

    Article  CAS  PubMed  Google Scholar 

  50. Richard, V., Murry, C. E., & Reimer, K. A. (1995). Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation, 92, 1891–901.

    Article  CAS  PubMed  Google Scholar 

  51. Hillenbrand, H. B., Sandstede, J., Störk, S., Ramsayer, B., Hahn, D., Ertl, G., et al. (2011). Remodeling of the infarct territory in the time course of infarct healing in humans. Magnetic Resonance Materials in Physics, Biology and Medicine, 24, 277–84.

  52. Theroux, P., Ross, J., Franklin, D., Covell, J. W., Bloor, C. M., & Sasayama, S. (1977). Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circulation Research, 40, 158–65.

    Article  CAS  PubMed  Google Scholar 

  53. Jugdutt, B. I., & Amy, R. W. M. (1986). Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. Journal of the American College of Cardiology, 7, 91–102.

  54. Clarke, S.A., Goodman, N.C., Ailawadi, G. and Holmes, J.W. (2015). Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. Journal of Cardiovascular Translational Research, 8, 353–61.

  55. Popović, A. D., Nešković, A. N., Marinković, J., & Thomas, J. D. (1996). Acute and long-term effects of thrombolysis after anterior wall acute myocardial infarction with serial assessment of infarct expansion and late ventricular remodeling. The American Journal of Cardiology, 77, 446–50.

    Article  PubMed  Google Scholar 

  56. Maclean, D., Fishbein, M. C., Braunwald, E., & Maroko, P. R. (1978). Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. The Journal of Clinical Investigation, 61, 541–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Miranda, A., Costa-e-Sousa, R. H., Werneck-de-Castro, J. P. S., Mattos, E. C., Olivares, E. L., Ribeiro, V. P., et al. (2007). Time course of echocardiographic and electrocardiographic parameters in myocardial infarct in rats. Anais da Academia Brasileira de Ciências, 79, 639–48.

    Article  PubMed  Google Scholar 

  58. Erlebacher, J. A., Weiss, J. L., Eaton, L. W., Kallman, C., Weisfeldt, M. L., & Bulkley, B. H. (1982). Late effects of acute infarct dilation on heart size: a two dimensional echocardiographic study. The American Journal of Cardiology, 49, 1120–6.

    Article  CAS  PubMed  Google Scholar 

  59. Pfeffer, J., Pfeffer, M., Fletcher, P., & Braunwald, E. (1991). Progressive ventricular remodeling in rat with myocardial infarction. The American Journal of Physiology Heart and Circulatory Physiology, 260, H1406–14.

    CAS  Google Scholar 

  60. Boyle, M. P., & Weisman, H. F. (1993). Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation, 88, 2872–83.

    Article  CAS  PubMed  Google Scholar 

  61. Golia, G., Marino, P., Rametta, F., Nidasio, G. P., Prioli, M. A., Anselmi, M., et al. (1994). Reperfusion reduces left ventricular dilatation by preventing infarct expansion in the acute and chronic phases of myocardial infarction. American Heart Journal, 127, 499–509.

    Article  CAS  PubMed  Google Scholar 

  62. Jugdutt, B. I., Khan, M. I., Jugdutt, S. J., & Blinston, G. E. (1995). Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation, 91, 802–12.

    Article  CAS  PubMed  Google Scholar 

  63. Guy, T. S., Moainie, S. L., Gorman, J. H., Jackson, B. M., Plappert, T., Enomoto, Y., et al. (2004). Prevention of ischemic mitral regurgitation does not influence the outcome of remodeling after posterolateral myocardial infarction. Journal of the American College of Cardiology, 43, 377–83.

    Article  PubMed  Google Scholar 

  64. Weinheimer, C. J., Lai, L., Kelly, D. P., & Kovacs, A. (2015). Novel mouse model of left ventricular pressure overload and infarction causing predictable ventricular remodelling and progression to heart failure. Clinical and Experimental Pharmacology & Physiology, 42, 33–40.

    Article  CAS  Google Scholar 

  65. Gupta, K. B., Ratcliffe, M. B., Fallert, M. A., Edmunds, L. H., & Bogen, D. K. (1994). Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation, 89, 2315–26.

    Article  CAS  PubMed  Google Scholar 

  66. Holmes, J. W., Nuñez, J. A., & Covell, J. W. (1997). Functional implications of myocardial scar structure. The American Journal of Physiology, 272, H2123–30.

    CAS  PubMed  Google Scholar 

  67. McGarvey, J. R., Mojsejenko, D., Dorsey, S. M., Nikou, A., Burdick, J. A., Gorman, J. H., et al. (2015). Temporal changes in infarct material properties: an in vivo assessment using magnetic resonance imaging and finite element simulations. The Annals of Thoracic Surgery, 100, 582–9.

    Article  PubMed  Google Scholar 

  68. Kelley, S. T., Malekan, R., Gorman, J. H. I., Jackson, B. M., Gorman, C., Suzuki, Y., et al. (1999). Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation, 99, 135–42.

    Article  CAS  PubMed  Google Scholar 

  69. Moainie, S. L., Guy, T. S., Gorman, J. H. I., Plappert, T., Jackson, B. M., St John-Sutton, M. G., et al. (2002). Infarct restraint attenuates remodeling and reduces chronic ischemic mitral regurgitation after postero-lateral infarction. The Annals of Thoracic Surgery, 74, 444–9.

    Article  PubMed  Google Scholar 

  70. Fujimoto, K. L., Tobita, K., Merryman, W. D., Guan, J., Momoi, N., Stolz, D. B., et al. (2007). An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. Journal of the American College of Cardiology, 49, 2292–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Simpson, D., Liu, H., Fan, T.-H. M., Nerem, R., & Dudley, S. C. (2007). A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells, 25, 2350–7.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. The Annals of Thoracic Surgery, 85, 901–8.

    Article  PubMed  Google Scholar 

  73. Liao, S.-Y., Siu, C.-W., Liu, Y., Zhang, Y., Chan, W.-S., Wu, E.X. et al. (2010). Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. Journal of Cardiac Failure, 16, 590–8.

  74. Dai, W., Wold, L. E., Dow, J. S., & Kloner, R. A. (2005). Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology, 46, 714–9.

    Article  CAS  PubMed  Google Scholar 

  75. Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117, 1388–96.

  76. Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. The Annals of Thoracic Surgery, 86, 1268–76.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ryan, L. P., Matsuzaki, K., Noma, M., Jackson, B. M., Eperjesi, T. J., Plappert, T. J., et al. (2009). Dermal filler injection: a novel approach for limiting infarct expansion. The Annals of Thoracic Surgery, 87, 148–55.

  78. Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P. and Davies, N. (2009) A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. Journal of Cardiac Failure, 15, 629–36.

  79. Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al. (2009). Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. Journal of the American College of Cardiology, 54, 1014–23.

    Article  PubMed  Google Scholar 

  80. Ifkovits, J.L., Tous, E., Minakawa, M., Morita, M., Robb, J.D., Koomalsingh, K.J. et al. (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 107, 11507–12.

  81. Rane, A. A., Chuang, J. S., Shah, A., Hu, D. P., Dalton, N. D., Gu, Y., et al. (2011). Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PloS One, 6, e21571.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Berry, M.F., Engler, A.J., Woo, Y.J., Pirolli, T.J., Bish, L.T., Jayasankar, V. et al. (2006). Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. The American Journal of Physiology Heart and Circulatory Physiology, 290, H2196–203.

  83. Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation, 114, 2627–35.

    Article  PubMed  Google Scholar 

  84. Barandon, L., Couffinhal, T., Ezan, J., Dufourcq, P., Costet, P., Alzieu, P., et al. (2003). Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation, 108, 2282–9.

    Article  CAS  PubMed  Google Scholar 

  85. McKay, R. G., Aroesty, J. M., Heller, G. V., Royal, H. D., Warren, S. E., & Grossman, W. (1986). Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circulation, 74, 97–104.

    Article  CAS  PubMed  Google Scholar 

  86. Litwin, S. E., Katz, S. E., Morgan, J. P., & Douglas, P. S. (1994). Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation, 89, 345–54.

    Article  CAS  PubMed  Google Scholar 

  87. Jugdutt, B. I., Joljart, M. J., & Khan, M. I. (1996). Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation, 94, 94–101.

    Article  CAS  PubMed  Google Scholar 

  88. Saeed, M., Watzinger, N., Krombach, G. A., Lund, G. K., Wendland, M. F., Chujo, M., et al. (2002). Left ventricular remodeling after infarction: sequential MR imaging with oral nicorandil therapy in rat model. Radiology, 224, 830–7.

  89. Ganame, J., Messalli, G., Masci, P. G., Dymarkowski, S., Abbasi, K., Van de Werf, F., et al. (2011). Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging. European Radiology, 21, 693–701.

    Article  PubMed  Google Scholar 

  90. Sakai, Y., Tsunoda, K., Ishibashi, I., Miyazaki, Y., Takahashi, O., & Masuda, Y. (2000). Time course of left ventricular remodeling after myocardial infarction. Japanese Circulation Journal, 64, 421–9.

    Article  CAS  PubMed  Google Scholar 

  91. Gao, X., Dart, A. M., Dewar, E., Jennings, G., & Du, X. J. (2000). Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovascular Research, 45, 330–8.

Download references

Compliance with Ethical Standards

Disclosures

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Sources of Funding

The authors gratefully acknowledge funding from the National Institutes of Health (R01HL116449 to JWH, T32HL007284 to WJR), the National Science Foundation (CMMI1332530 to JWH), and the American Heart Association (14POST20460271 to WJR).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Richardson.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, W.J., Holmes, J.W. Why Is Infarct Expansion Such an Elusive Therapeutic Target?. J. of Cardiovasc. Trans. Res. 8, 421–430 (2015). https://doi.org/10.1007/s12265-015-9652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9652-2

Keywords

Navigation