Skip to main content

Advertisement

Log in

Characterization of CD133 Antibody-Directed Recellularized Heart Valves

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

CD133mAb conjugation (CD133-C) hastens in vivo recellularization of decellularized porcine heart valve scaffolds when placed in the pulmonary position of sheep. We now characterize this early cellularization process 4 h, 3, 7, 14, 30, or 90 days post-implantation. Quantitative immunohistochemistry identified cell types as well as changes in cell markers and developmental cues. CD133+/CD31 cells adhered to the leaflet surface of CD133-C leaflets by 3 days and transitioned to native leaflet-like CD133/CD31+ cells by 30 days. Leaflet interstitium became increasingly populated with both alpha-smooth muscle actin (αSMA) and vimentin+ cells from 14 to 90 days post-implantation. Wnt3a, and beta-catenin proteins were expressed at early (3–14 days) but not later (30–90 days) time points. In contrast, matrix metalloproteinase-2 and periostin proteins were increasingly expressed over 90 days. Thus, early development of CD133-C constructs includes a fairly rapid transition from a precursor cell adhesion/migration/transdifferentiation phenotype to a more mature cell/native valve-like matrix metabolism phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., et al. (2011). Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation, 123, e18–e209.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Senthilnathan, V., Treasure, T., Grunkemeier, G., & Starr, A. (1999). Heart valves: which is the best choice? Cardiovascular Surgery, 7(4), 393–7.

    Article  CAS  PubMed  Google Scholar 

  3. Sacks, M. S., Enomoto, Y., Graybill, J. R., Merryman, W. D., Zeeshan, A., Yoganathan, A. P., Levy, R. J., Gorman, R. C., & Gorman, J. H., 3rd. (2006). In-vivo dynamic deformation of the mitral valve anterior leaflet. The Annals of Thoracic Surgery, 82(4), 1369–77.

    Article  PubMed  Google Scholar 

  4. Henaine, R., Roubertie, F., Vergnat, M., & Ninet, J. (2012). Valve replacement in children: a challenge for a whole life. Archives of Cardiovascular Diseases, 105(10), 517–28.

    Article  PubMed  Google Scholar 

  5. Schoen, F. J. (2011). Heart valve tissue engineering: quo vadis? Current Opinion in Biotechnology, 22(5), 698–705.

    Article  CAS  PubMed  Google Scholar 

  6. Mendelson, K., & Schoen, F. J. (2006). Heart valve tissue engineering: concepts, approaches, progress, and challenges. Annals of Biomedical Engineering, 34(12), 1799–819.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rippel, R. A., Ghanbari, H., & Seifalian, A. M. (2012). Tissue-engineered heart valve: future of cardiac surgery. World Journal of Surgery, 36(7), 1581–91.

    Article  PubMed  Google Scholar 

  8. Butcher, J. T., & Nerem, R. M. (2006). Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Engineering, 12, 905–915.

    Article  CAS  PubMed  Google Scholar 

  9. Butcher, J. T., Penrod, A. M., Garcia, A. J., & Nerem, R. M. (2004). Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1429–34.

    Article  CAS  PubMed  Google Scholar 

  10. Niessen, K., & Karsan, A. (2008). Notch signaling in cardiac development. Circulation Research, 102, 1169–81.

    Article  CAS  PubMed  Google Scholar 

  11. Combs, M. D., & Yutzey, K. E. (2009). Heart valve development: regulatory networks in development and disease. Circulation Research, 105, 408–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lee, D. J., Steen, J., Jordan, J. E., Kincaid, E. H., Kon, N. D., Atala, A., Berry, J., & Yoo, J. J. (2009). Endothelialization of heart valve matrix using a computer-assisted pulsatile bioreactor. Tissue Engineering. Part A, 15(4), 807–14.

    Article  CAS  PubMed  Google Scholar 

  13. Paruchuri, S., Yang, J. H., Aikawa, E., Melero-Martin, J. M., Khan, Z. A., Loukogeorgakis, S., Schoen, F. J., & Bischoff, J. (2006). Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-a and transforming growth factor-beta2. Circulation Research, 99(8), 861–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Brand, N. J., Roy, A., Hoare, G., Chester, A., & Yacoub, M. H. (2006). Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. The International Journal of Biochemistry & Cell Biology, 38(1), 30–42.

    Article  CAS  Google Scholar 

  15. Mulholland, D. L., & Gotlieb, A. I. (1996). Cell biology of the valvular interstitial cells. The Canadian Journal of Cardiology, 12, 231–6.

    CAS  PubMed  Google Scholar 

  16. Dreger, S. A., Taylor, P. M., Allen, S. P., & Yacoub, M. H. (2002). Profile and localization of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in human heart valves. The Journal of Heart Valve Disease, 11, 875–80.

    PubMed  Google Scholar 

  17. Rabkin-Aikawa, E., Farber, M., Aikawa, M., & Schoen, F. J. (2004). Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. The Journal of Heart Valve Disease, 13(5), 841–7.

    PubMed  Google Scholar 

  18. Rabkin-Aikawa, E., Mayer, J. E., Jr., & Schoen, F. J. (2005). Heart valve regeneration. Advances in Biochemical Engineering/Biotechnology, 94, 141–79. Review.

    Article  PubMed  Google Scholar 

  19. Alfieri, C. M., Cheek, J., Chakraborty, S., & Yutzey, K. E. (2010). Wnt signaling in heart valve development and osteogenic gene induction. Developmental Biology, 338(2), 127–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jordan, J. E., Williams, J. K., Lee, S. J., Raghavan, D., Atala, A., & Yoo, J. J. (2012). Bioengineered self-seeding heart valves. The Journal of Thoracic and Cardiovascular Surgery, 143(1), 201–8.

    Article  PubMed  Google Scholar 

  21. Tillman, B. W., Yazdani, S. K., Geary, R. L., Corriere, M. A., Atala, A., & Yoo, J. J. (2009). Efficient recovery of endothelial progenitors for clinical translation. Tissue Engineering. Part C, Methods, 15(2), 213–21.

    Article  CAS  PubMed  Google Scholar 

  22. Norris, R. A., Moreno-Rodriguez, R. A., Sugi, Y., Hoffman, S., Amos, J., Hart, M. M., Potts, J. D., Goodwin, R. L., & Markwald, R. R. (2008). Periostin regulates atrioventricular valve maturation. Developmental Biology, 316(2), 200–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hakuno, D., Kimura, N., Yoshioka, M., Mukai, M., Kimura, T., Okada, Y., Yozu, R., Shukunami, C., Hiraki, Y., Kudo, A., Ogawa, S., & Fukuda, K. (2010). Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. The Journal of Clinical Investigation, 120(7), 2292–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lichtenberg, A., Tudorache, I., Cebotari, S., Ringes-Lichtenberg, S., Sturz, G., Hoeffler, K., Hurscheler, C., Brandes, G., Hilfiker, A., & Haverich, A. (2006). In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials, 27(23), 4221–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tudorache, I., Calistru, A., Baraki, H., Meyer, T., Höffler, K., Sarikouch, S., Bara, C., Görler, A., Hartung, D., Hilfiker, A., Haverich, A., & Cebotari, S. (2013). Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Engineering Part A, 19(15-16), 1686–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., Lichtenberg, A., Cheptanaru, E., Barnaciuc, S., Cazacu, A., Maliga, O., Repin, O., Maniuc, L., Breymann, T., & Haverich, A. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11), S115–23.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

This study was funded by the Errett Fisher Foundation. Elizabeth S. Miller was an American Association for Thoracic Surgery Summer Scholarship recipient. There are no conflicts of interest for any of the authors. All authors give their informed consent for publication of this study. All studies were performed in accordance with the “Guide for the Care and Use of Laboratory Animals” (1996) published by the National Institutes of Health and under a protocol approved by the Wake Forest School of Medicine.

Conflict of Interest

The authors do not have any conflict of interest regarding the publication of these data and this manuscript.

Funding

Funded in part by the Errett-Fisher Foundation. Elizabeth S. Miller was an American Association for Thoracic Surgery Summer Scholarship recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Koudy Williams.

Additional information

Associate Editor Daniel P. Judge oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.K., Miller, E.S., Lane, M.R. et al. Characterization of CD133 Antibody-Directed Recellularized Heart Valves. J. of Cardiovasc. Trans. Res. 8, 411–420 (2015). https://doi.org/10.1007/s12265-015-9651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9651-3

Keywords

Navigation