Skip to main content
Log in

Peripheral Venous Hemoglobin and Red Blood Cell Mass Mismatch in Volume Overload Systolic Heart Failure: Implications for Patient Management

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Peripheral venous hemoglobin (Hb) measurements are considered to accurately reflect circulating red blood cell mass (RBCM). In volume overload decompensated chronic heart failure (DCHF), reliance on Hb values may be misleading. Using quantitative radiolabel blood volume analysis (BVA), we evaluated the relation of RBCM to volume overload and reliability of Hb measurements to reflect RBC status in patients hospitalized for DCHF. Of 32 patients evaluated (LVEF <50 %), 19 met WHO Hb criteria for anemia. By BVA, however, only 4/19 had true anemia (low Hb and low RBCM) while 15/19 demonstrated plasma volume expansion dilution-related “anemia” (6 low Hb/normal RBCM, 9 low Hb/excess RBCM). The remaining 13/32 had normal range Hb (12 with excess RBCM). Overall, 66 % of cohort demonstrated RBCM excess. RBC profiles are highly variable in DCHF, and peripheral Hb values are often misleading in identifying RBC status. These findings have implications for volume management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

HF:

Heart failure

PV:

Plasma volume

RBCM:

Red blood cell mass

Hb:

Hemoglobin

DCHF:

Decompensated chronic heart failure

LVEF:

Left ventricular ejection fraction

ACEI:

Angiotensin-converting enzyme inhibitors

ARBs:

Angiotensin receptor blockers

NYHA:

New York Heart Association

TBV:

Total blood volume

BVA:

Blood volume analysis

SD:

Standard deviation

WHO:

World Health Organization

ED:

Emergency department

References

  1. Cody, R. J., Covit, A. B., Schaer, G. L., Laragh, J. H., Sealey, J. E., & Feldschuh, J. (1986). Sodium and water balance in chronic congestive heart failure. Journal of Clinical Investigation, 77, 1441–1452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hamilton, R. W., & Buckalew, W. M., Jr. (1984). Sodium, water, and congestive heart failure. Annals of Internal Medicine, 100, 902–903.

    Article  CAS  PubMed  Google Scholar 

  3. Francis, G. S., Goldsmith, S. R., Levine, B., Olivari, M. T., & Cohn, J. A. (1984). The neurohormonal axis in congestive heart failure. Annals of Internal Medicine, 101(3), 370–377.

    Article  CAS  PubMed  Google Scholar 

  4. Ghali, J. K., & Tam, S. W. (2010). The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. Journal of Cardiac Failure, 16, 419–431.

    Article  CAS  PubMed  Google Scholar 

  5. Androne, A., Katz, S. D., Lund, L., LaManca, J., Hudaihed, A., Hryniewicz, K., & Mancini, D. M. (2003). Hemodilution is common in patients with advanced heart failure. Circulation, 107, 226–229.

    Article  PubMed  Google Scholar 

  6. Abramov, D., Cohen, R. S., Katz, S. D., Mancini, D., & Maurer, M. S. (2008). Comparison of blood volume characteristics in anemic patients with low vs preserved left ventricular ejection fractions. American Journal of Cardiology, 102, 1069–1072.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hong, N., Youn, J.-C., Oh, J., Lee, H. S., Park, S., Choi, D., & Kang, S. M. (2014). Prognostic value of new-onset anemia as a marker of hemodilution in patients with acute decompensated heart failure and severe renal dysfunction. Journal of Cardiology, 64, 43–48.

    Article  PubMed  Google Scholar 

  8. Van der Meer, P., Postmus, D., Ponikowski, P., Cleland, J. G., O’Connor, C. M., Cotter, G., Metra, M., Davison, B. A., Givertz, M. M., Mansoor, G. A., Teerlink, J. R., Massie, B. M., Hillege, H. L., & Voors, A. A. (2013). The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. Journal of the American College of Cardiology, 61, 1973–1981.

    Article  PubMed  Google Scholar 

  9. Testani, J. M., Brisco, M. A., Chen, J., McCauley, B. D., Parikh, C. R., & Tang, W. H. W. (2013). Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival. Journal of the American College of Cardiology, 62, 516–524.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Testani, J. M., Chen, J., McCauley, B. D., Kimmel, S. E., & Shannon, R. P. (2010). Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation, 122, 265–272.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Borovka, M., Teruya, S., Alvarez, J., Helmke, S., & Maurer, M. S. (2013). Differences in blood volume components between hyporesponders and responders to erythropoietin alfa: the heart failure with preserved ejection fraction anemia trial. Journal of Cardiac Failure, 19, 685–691.

    Article  PubMed  Google Scholar 

  12. Sharma, R., Francis, D. P., Pitt, B., Poole-Wilson, P. A., Coates, A. J. S., & Anker, S. D. (2004). Haemoglobin predicts survival in patients with chronic heart failure: a study of the ELITE II trial. European Heart Journal, 25, 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  13. Miller, W. L., & Mullan, B. P. (2014). Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management. Role for blood volume quantitation. Journal of the American College of Cardiology–Heart Failure, 2, 298–305.

    Google Scholar 

  14. Feldschuh, J., & Enson, Y. (1977). Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation, 56, 605–612.

    Article  CAS  PubMed  Google Scholar 

  15. Feldschuh, J. (1990). Blood volume measurements in hypertensive disease. In J. H. Larah & B. M. Brenner (Eds.), Hypertension: Pathology, diagnosis, and management. NY: Raven.

    Google Scholar 

  16. Fairbanks, V. F., Klee, G. G., Wiseman, G. A., Hoyer, J. D., Tefferi, A., Petitt, R. M., & Silverstein, M. N. (1996). Measurement of blood volume and red cell mass: re-examination of 51Cr and 125I methods. Blood Cells, Molecules & Diseases, 22, 169–186.

    Article  CAS  Google Scholar 

  17. Katz, S. D. (2007). Blood volume assessment in the diagnosis and treatment of chronic heart failure. American Journal of the Medical Sciences, 334, 47–52.

    Article  PubMed  Google Scholar 

  18. Van, P. Y., Riha, G. M., Cho, S. D., Underwood, S. J., Hamilton, G. J., Anderson, R., Ham, L. B., & Schreiber, M. A. (2011). Blood volume analysis can distinguish true anemia from hemodilution in critically ill patients. Journal of Trauma, 70, 646–651.

    Article  PubMed  Google Scholar 

  19. Androne, A. S., Hryniewicz, K., Hudaihed, A., Mancini, D., Lamanca, J., & Katz, S. D. (2004). Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. American Journal of Cardiology, 93, 1254–1259.

    Article  PubMed  Google Scholar 

  20. Dworkin, H. J., Premo, M., & Dees, S. (2007). Comparison of red cell volume and whole blood volume as performed using both chromium-51 tagged red cells and iodine-125 tagged albumin and using I-131 tagged albumin and extrapolated red cell volume. American Journal of the Medical Sciences, 334(1), 37–40.

    Article  PubMed  Google Scholar 

  21. Anonymous (1968) Nutritional anaemias. Report of a WHO Scientific Group. World Health Organization Technical Report Series 405:5–37

  22. Gagnon, D. R., Zhang, T. J., Brand, F. N., & Kannel, W. B. (1994). Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up. American Heart Journal, 127, 674–682.

    Article  CAS  PubMed  Google Scholar 

  23. Butler, J., & Kalogeropoulos, A. (2008). Worsening heart failure hospitalization epidemic. Journal of the American College of Cardiology, 52, 435–437.

    Article  PubMed  Google Scholar 

  24. Ross, J. S., Chen, J., Lin, Z., Bueno, H., Curtis, J. P., Keenan, P. S., Normand, S. L., Schreiner, G., Spertus, J. A., Vidan, M. T., Wang, Y., Wang, Y., & Krumholz, H. M. (2010). Recent national trends in readmission rates after heart failure hospitalization. Circulation Heart Failure, 3, 97–103.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Human Subjects/Informed Consent Statement

IRB approval was obtained for collection of human clinical study data.

Animal Studies

No animal studies were carried out by the authors for this article.

Sources of Funding

None. No funding support received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne L. Miller.

Additional information

Associate Editor Craig Stolen oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, W.L., Mullan, B.P. Peripheral Venous Hemoglobin and Red Blood Cell Mass Mismatch in Volume Overload Systolic Heart Failure: Implications for Patient Management. J. of Cardiovasc. Trans. Res. 8, 404–410 (2015). https://doi.org/10.1007/s12265-015-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9650-4

Keywords

Navigation