Skip to main content
Log in

Imaging of Oxidation-Specific Epitopes with Targeted Nanoparticles to Detect High-Risk Atherosclerotic Lesions: Progress and Future Directions

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Topol, E. J., & Nissen, S. E. (1995). Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation, 92, 2333–2342.

    Article  CAS  PubMed  Google Scholar 

  2. Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., & Serruys, P. W. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364, 226–235.

    Article  CAS  PubMed  Google Scholar 

  3. Witztum, J. L., & Lichtman, A. H. (2014). The influence of innate and adaptive immune responses on atherosclerosis. Annual Review of Pathology, 9, 73–102.

    Article  CAS  PubMed  Google Scholar 

  4. Lichtman, A. H., Binder, C. J., Tsimikas, S., & Witztum, J. L. (2013). Adaptive immunity in atherogenesis: new insights and therapeutic approaches. The Journal of Clinical Investigation, 123, 27–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Miller, Y. I., Choi, S. H., Wiesner, P., Fang, L., Harkewicz, R., Hartvigsen, K., Boullier, A., Gonen, A., Diehl, C. J., Que, X., Montano, E., Shaw, P. X., Tsimikas, S., Binder, C. J., & Witztum, J. L. (2011). Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circulation Research, 108, 235–248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tsimikas, S., & Miller, Y. I. (2011). Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease. Current Pharmaceutical Design, 17, 27–37.

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg, D., & Witztum, J. L. (2010). Oxidized low-density lipoprotein and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2311–2316.

    Article  CAS  PubMed  Google Scholar 

  8. Navab, M., Ananthramaiah, G. M., Reddy, S. T., Van Lenten, B. J., Ansell, B. J., Fonarow, G. C., Vahabzadeh, K., Hama, S., Hough, G., Kamranpour, N., Berliner, J. A., Lusis, A. J., & Fogelman, A. M. (2004). Thematic review series: the pathogenesis of atherosclerosis: the oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. Journal of Lipid Research, 45, 993–1007.

    Article  CAS  PubMed  Google Scholar 

  9. Glass, C. K., & Witztum, J. L. (2001). Atherosclerosis: the road ahead. Cell, 104, 503–516.

    Article  CAS  PubMed  Google Scholar 

  10. Aikawa, M., Sugiyama, S., Hill, C. C., Voglic, S. J., Rabkin, E., Fukumoto, Y., Schoen, F. J., Witztum, J. L., & Libby, P. (2002). Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation, 106, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  11. Palinski, W., Rosenfeld, M. E., Yla-Herttuala, S., Gurtner, G. C., Socher, S. S., Butler, S. W., Parthasarathy, S., Carew, T. E., Steinberg, D., & Witztum, J. L. (1989). Low density lipoprotein undergoes oxidative modification in vivo. PNAS, 86, 1372–1376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yla-Herttuala, S., Palinski, W., Rosenfeld, M. E., Parthasarathy, S., Carew, T. E., Butler, S., Witztum, J. L., & Steinberg, D. (1989). Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. The Journal of Clinical Investigation, 84, 1086–1095.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Palinski, W., Yla-Herttuala, S., Rosenfeld, M. E., Butler, S. W., Socher, S. A., Parthasarathy, S., Curtiss, L. K., & Witztum, J. L. (1990). Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis, 10, 325–335.

    Article  CAS  PubMed  Google Scholar 

  14. Palinski, W., Horkko, S., Miller, E., Steinbrecher, U. P., Powell, H. C., Curtiss, L. K., & Witztum, J. L. (1996). Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. The Journal of Clinical Investigation, 98, 800–814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tsimikas, S., Palinski, W., Halpern, S. E., Yeung, D. W., Curtiss, L. K., & Witztum, J. L. (1999). Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. Journal of Nuclear Cardiology, 6, 41–53.

    Article  CAS  PubMed  Google Scholar 

  16. Tsimikas, S., Shortal, B. P., Witztum, J. L., & Palinski, W. (2000). In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 689–697.

    Article  CAS  PubMed  Google Scholar 

  17. Shaw, P. X., Horkko, S., Chang, M. K., Curtiss, L. K., Palinski, W., Silverman, G. J., & Witztum, J. L. (2000). Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. The Journal of Clinical Investigation, 105, 1731–1740.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tsimikas, S., Palinski, W., & Witztum, J. L. (2001). Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 95–100.

    Article  CAS  PubMed  Google Scholar 

  19. Shaw, P. X., Horkko, S., Tsimikas, S., Chang, M. K., Palinski, W., Silverman, G. J., Chen, P. P., & Witztum, J. L. (2001). Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1333–1339.

    Article  CAS  PubMed  Google Scholar 

  20. Torzewski, M., Shaw, P. X., Han, K. R., Shortal, B., Lackner, K. J., Witztum, J. L., Palinski, W., & Tsimikas, S. (2004). Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2307–2312.

    Article  CAS  PubMed  Google Scholar 

  21. Tsimikas, S., Aikawa, M., Miller, F. J., Jr., Miller, E. R., Torzewski, M., Lentz, S. R., Bergmark, C., Heistad, D. D., Libby, P., & Witztum, J. L. (2007). Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 175–181.

    Article  CAS  PubMed  Google Scholar 

  22. Tsimikas, S., Miyanohara, A., Hartvigsen, K., Merki, E., Shaw, P. X., Chou, M. Y., Pattison, J., Torzewski, M., Sollors, J., Friedmann, T., Lai, N. C., Hammond, H. K., Getz, G. S., Reardon, C. A., Li, A. C., Banka, C. L., & Witztum, J. L. (2011). Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression. Journal of the American College of Cardiology, 58, 1715–1727.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Briley-Saebo, K. C., Cho, Y. S., Shaw, P. X., Ryu, S. K., Mani, V., Dickson, S., Izadmehr, E., Green, S., Fayad, Z. A., & Tsimikas, S. (2011). Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. Journal of the American College of Cardiology, 57, 337–347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fang, L., Green, S. R., Baek, J. S., Lee, S. H., Ellett, F., Deer, E., Lieschke, G. J., Witztum, J. L., Tsimikas, S., & Miller, Y. I. (2011). In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. The Journal of Clinical Investigation, 121, 4861–4869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vucic, E., Dickson, S. D., Calcagno, C., Rudd, J. H. F., Moshier, E., Hayashi, K., Mounessa, J. S., Roytman, M., Moon, M. J., Lin, J., Tsimikas, S., Fisher, E. A., Nicolay, K., Fuster, V., & Fayad, Z. A. (2011). Pioglitazone modulates vascular inflammation in atherosclerotic rabbits: noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC: Cardiovascular Imaging, 4, 1100–1109.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Briley-Saebo, K. C., Nguyen, T. H., Saeboe, A. M., Cho, Y. S., Ryu, S. K., Volkava, E., Dickson, S., Leibundgut, G., Weisner, P., Green, S., Casanada, F., Miller, Y. I., Shaw, W., Witztum, J. L., Fayad, Z. A., & Tsimikas, S. (2012). In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. Journal of the American College of Cardiology, 59, 616–626.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. van Dijk, R. A., Kolodgie, F., Ravandi, A., Leibundgut, G., Hu, P. P., Prasad, A., Mahmud, E., Dennis, E., Curtiss, L. K., Witztum, J. L., Wasserman, B. A., Otsuka, F., Virmani, R., & Tsimikas, S. (2012). Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. Journal of Lipid Research, 53, 2773–2790.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Vucic, E., Calcagno, C., Dickson, S. D., Rudd, J. H., Hayashi, K., Bucerius, J., Moshier, E., Mounessa, J. S., Roytman, M., Moon, M. J., Lin, J., Ramachandran, S., Tanimoto, T., Brown, K., Kotsuma, M., Tsimikas, S., Fisher, E. A., Nicolay, K., Fuster, V., & Fayad, Z. A. (2012). Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC: Cardiovascular Imaging, 5, 819–828.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Purushothaman, K. R., Purushothaman, M., Levy, A. P., Lento, P. A., Evrard, S., Kovacic, J. C., Briley-Saebo, K. C., Tsimikas, S., Witztum, J. L., Krishnan, P., Kini, A., Fayad, Z. A., Fuster, V., Sharma, S. K., & Moreno, P. R. (2012). Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis. Journal of the American College of Cardiology, 60, 112–119.

    Article  CAS  PubMed  Google Scholar 

  30. Choi, S. H., Yin, H., Ravandi, A., Armando, A., Dumlao, D., Kim, J., Almazan, F., Taylor, A. M., McNamara, C. A., Tsimikas, S., Dennis, E. A., Witztum, J. L., & Miller, Y. I. (2013). Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages. PloS One, 8, e83145.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ravandi, A., Leibundgut, G., Hung, M.Y., Patel, M., Hutchins, P.M., Murphy, R.C., Prasad, A., Mahmud, E., Miller, Y.I., Dennis, E., Witztum, J.L., & Tsimikas, S. (2014). Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol (in press).

  32. Bergmark, C., Dewan, A., Orsoni, A., Merki, E., Miller, E. R., Shin, M. J., Binder, C. J., Horkko, S., Krauss, R. M., Chapman, M. J., Witztum, J. L., & Tsimikas, S. (2008). A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. Journal of Lipid Research, 49, 2230–2239.

    Article  CAS  PubMed  Google Scholar 

  33. Leibundgut, G., Scipione, C., Yin, H., Schneider, M., Boffa, M. B., Green, S., Yang, X., Dennis, E. A., Witztum, J. L., Koschinsky, M. L., & Tsimikas, S. (2013). Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). Journal of Lipid Research, 54, 2815–2830.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tsimikas, S., & Hall, J. H. (2012). Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. Journal of the American College of Cardiology, 60, 716–721.

    Article  CAS  PubMed  Google Scholar 

  35. Kamstrup, P. R., Tybjaerg-Hansen, A., & Nordestgaard, B. G. (2014). Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. Journal of the American College of Cardiology, 63, 470–477.

    Article  CAS  PubMed  Google Scholar 

  36. Thanassoulis, G., Campbell, C. Y., Owens, D. S., Smith, J. G., Smith, A. V., Peloso, G. M., Kerr, K. F., Pechlivanis, S., Budoff, M. J., Harris, T. B., Malhotra, R., O’Brien, K. D., Kamstrup, P. R., Nordestgaard, B. G., Tybjaerg-Hansen, A., Allison, M. A., Aspelund, T., Criqui, M. H., Heckbert, S. R., Hwang, S. J., Liu, Y., Sjogren, M., van der Pals, J., Kalsch, H., Muhleisen, T. W., Nothen, M. M., Cupples, L. A., Caslake, M., Di Angelantonio, E., Danesh, J., Rotter, J. I., Sigurdsson, S., Wong, Q., Erbel, R., Kathiresan, S., Melander, O., Gudnason, V., O’Donnell, C. J., & Post, W. S. (2013). Genetic associations with valvular calcification and aortic stenosis. The New England Journal of Medicine, 368, 503–512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hung, M. Y., Witztum, J. L., & Tsimikas, S. (2014). New therapeutic targets for calcific aortic valve stenosis: the lipoprotein(a)-lipoprotein-associated phospholipase A2-oxidized phospholipid axis. Journal of the American College of Cardiology, 63, 478–480.

    Article  PubMed  Google Scholar 

  38. Binder, C. J., Horkko, S., Dewan, A., Chang, M. K., Kieu, E. P., Goodyear, C. S., Shaw, P. X., Palinski, W., Witztum, J. L., & Silverman, G. J. (2003). Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nature Medicine, 9, 736–743.

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, M. J., Malik, T. H., Ehrenstein, M. R., Boyle, J. J., Botto, M., & Haskard, D. O. (2009). Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation, 120, 417–426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kyaw, T., Tay, C., Krishnamurthi, S., Kanellakis, P., Agrotis, A., Tipping, P., Bobik, A., & Toh, B. H. (2011). B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circulation Research, 109, 830–U834.

    Article  CAS  PubMed  Google Scholar 

  41. Karvonen, J., Paivansalo, M., Kesaniemi, Y. A., & Horkko, S. (2003). Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation, 108, 2107–2112.

    Article  CAS  PubMed  Google Scholar 

  42. Ravandi, A., Boekholdt, S. M., Mallat, Z., Talmud, P. J., Kastelein, J. J., Wareham, N. J., Miller, E. R., Benessiano, J., Tedgui, A., Witztum, J. L., Khaw, K. T., & Tsimikas, S. (2011). Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. Journal of Lipid Research, 52, 1829–1836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tsimikas, S., Willeit, P., Willeit, J., Santer, P., Mayr, M., Xu, Q., Mayr, A., Witztum, J. L., & Kiechl, S. (2012). Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. Journal of the American College of Cardiology, 60, 2218–2229.

    Article  CAS  PubMed  Google Scholar 

  44. Osborn, E. A., & Jaffer, F. A. (2013). The advancing clinical impact of molecular imaging in CVD. JACC. Cardiovascular Imaging, 6, 1327–1341.

    Article  PubMed  Google Scholar 

  45. Lindner, J., & Sinusas, A. (2013). Molecular imaging in cardiovascular disease: which methods, which diseases? Journal of Nuclear Cardiology, 20, 990–1001.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Jaffer, F.A., & Verjans, J.W. (2013). Molecular imaging of atherosclerosis: clinical state-of-the-art. Heart, 100, (18):1469–77.

  47. Quillard, T., & Libby, P. (2012). Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circulation Research, 111, 231–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12, 204–212.

    Article  CAS  PubMed  Google Scholar 

  49. Libby, P., Lichtman, A. H., & Hansson, G. K. (2013). Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity, 38, 1092–1104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Greenberg, M. E., Li, X. M., Gugiu, B. G., Gu, X., Qin, J., Salomon, R. G., & Hazen, S. L. (2008). The lipid whisker model of the structure of oxidized cell membranes. The Journal of Biological Chemistry, 283, 2385–2396.

    Article  CAS  PubMed  Google Scholar 

  51. Berliner, J. A., Leitinger, N., & Tsimikas, S. (2009). The role of oxidized phospholipids in atherosclerosis. Journal of Lipid Research, 50(Suppl), S207–S212.

    PubMed Central  PubMed  Google Scholar 

  52. Bochkov, V. N., Oskolkova, O. V., Birukov, K. G., Levonen, A. L., Binder, C. J., & Stockl, J. (2010). Generation and biological activities of oxidized phospholipids. Antioxidants & Redox Signaling, 12, 1009–1059.

    Article  CAS  Google Scholar 

  53. Seimon, T. A., Nadolski, M. J., Liao, X., Magallon, J., Nguyen, M., Feric, N. T., Koschinsky, M. L., Harkewicz, R., Witztum, J. L., Tsimikas, S., Golenbock, D., Moore, K. J., & Tabas, I. (2010). Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabolism, 12, 467–482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Piotrowski, J. J., Shah, S., & Alexander, J. J. (1996). Mature human atherosclerotic plaque contains peroxidized phosphatidylcholine as a major lipid peroxide. Life Sciences, 58, 735–740.

    Article  CAS  PubMed  Google Scholar 

  55. Holvoet, P., Collen, D., & van de Werf, F. (1999). Malondialdehyde-modified LDL as a marker of acute coronary syndromes. JAMA, 281, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  56. Ehara, S., Ueda, M., Naruko, T., Haze, K., Itoh, A., Otsuka, M., Komatsu, R., Matsuo, T., Itabe, H., Takano, T., Tsukamoto, Y., Yoshiyama, M., Takeuchi, K., Yoshikawa, J., & Becker, A. E. (2001). Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation, 103, 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  57. Tsimikas, S., Bergmark, C., Beyer, R. W., Patel, R., Pattison, J., Miller, E., Juliano, J., & Witztum, J. L. (2003). Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. Journal of the American College of Cardiology, 41, 360–370.

    Article  CAS  PubMed  Google Scholar 

  58. Palinski, W., Ord, V. A., Plump, A. S., Breslow, J. L., Steinberg, D., & Witztum, J. L. (1994). ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arteriosclerosis and Thrombosis, 14, 605–616.

    Article  CAS  PubMed  Google Scholar 

  59. Palinski, W., Tangirala, R. K., Miller, E., Young, S. G., & Witztum, J. L. (1995). Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1569–1576.

    Article  CAS  PubMed  Google Scholar 

  60. Weismann, D., Hartvigsen, K., Lauer, N., Bennett, K. L., Scholl, H. P., Charbel Issa, P., Cano, M., Brandstatter, H., Tsimikas, S., Skerka, C., Superti-Furga, G., Handa, J. T., Zipfel, P. F., Witztum, J. L., & Binder, C. J. (2011). Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature, 478, 76–81.

    Article  CAS  PubMed  Google Scholar 

  61. Chang, M. K., Binder, C. J., Torzewski, M., & Witztum, J. L. (2002). C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. PNAS, 99, 13043–13048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chou, M. Y., Fogelstrand, L., Hartvigsen, K., Hansen, L. F., Woelkers, D., Shaw, P. X., Choi, J., Perkmann, T., Backhed, F., Miller, Y. I., Horkko, S., Corr, M., Witztum, J. L., & Binder, C. J. (2009). Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. The Journal of Clinical Research, 119, 1335–1349.

    CAS  Google Scholar 

  63. Chang, M. K., Binder, C. J., Miller, Y. I., Subbanagounder, G., Silverman, G. J., Berliner, J. A., & Witztum, J. L. (2004). Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. The Journal of Experimental Medicine, 200, 1359–1370.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145, 341–355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Yla-Herttuala, S., Palinski, W., Butler, S. W., Picard, S., Steinberg, D., & Witztum, J. L. (1994). Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arteriosclerosis and Thrombosis, 14, 32–40.

    Article  CAS  PubMed  Google Scholar 

  66. Rosenfeld, M. E., Palinski, W., Yla-Herttuala, S., Butler, S., & Witztum, J. L. (1990). Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis, 10, 336–349.

    Article  CAS  PubMed  Google Scholar 

  67. Yla-Herttuala, S., Palinski, W., Rosenfeld, M. E., Steinberg, D., & Witztum, J. L. (1990). Lipoproteins in normal and atherosclerotic aorta. European History Journal, 11(Suppl E), 88–99.

    CAS  Google Scholar 

  68. Horkko, S., Bird, D. A., Miller, E., Itabe, H., Leitinger, N., Subbanagounder, G., Berliner, J. A., Friedman, P., Dennis, E. A., Curtiss, L. K., Palinski, W., & Witztum, J. L. (1999). Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. The Journal of Clinical Investigation, 103, 117–128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Leibundgut, G., Witztum, J. L., & Tsimikas, S. (2013). Oxidation-specific epitopes and immunological responses: translational biotheranostic implications for atherosclerosis. Current Opinion in Pharmacology, 13, 168–179.

    Article  CAS  PubMed  Google Scholar 

  70. Miller, Y. I., & Tsimikas, S. (2013). Oxidation-specific epitopes as targets for biotheranostic applications in humans: biomarkers, molecular imaging and therapeutics. Current Opinion in Lipidology, 24, 426–437.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Taleb, A., Witztum, J. L., & Tsimikas, S. (2011). Oxidized phospholipids on apolipoprotein B-100 (OxPL/apoB) containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomarkers Medecine, 5, 673–694.

    Article  CAS  Google Scholar 

  72. Tsimikas, S., Lau, H. K., Han, K. R., Shortal, B., Miller, E. R., Segev, A., Curtiss, L. K., Witztum, J. L., & Strauss, B. H. (2004). Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation, 109, 3164–3170.

    Article  CAS  PubMed  Google Scholar 

  73. Tsimikas, S., Kiechl, S., Willeit, J., Mayr, M., Miller, E. R., Kronenberg, F., Xu, Q., Bergmark, C., Weger, S., Oberhollenzer, F., & Witztum, J. L. (2006). Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. Journal of the American College of Cardiology, 47, 2219–2228.

    Article  CAS  PubMed  Google Scholar 

  74. Tsimikas, S., Brilakis, E. S., Miller, E. R., McConnell, J. P., Lennon, R. J., Kornman, K. S., Witztum, J. L., & Berger, P. B. (2005). Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. The New England Journal of Medicine, 353, 46–57.

    Article  CAS  PubMed  Google Scholar 

  75. Kiechl, S., Willeit, J., Mayr, M., Viehweider, B., Oberhollenzer, M., Kronenberg, F., Wiedermann, C. J., Oberthaler, S., Xu, Q., Witztum, J. L., & Tsimikas, S. (2007). Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1788–1795.

    Article  CAS  PubMed  Google Scholar 

  76. Tsimikas, S., Mallat, Z., Talmud, P. J., Kastelein, J. J., Wareham, N. J., Sandhu, M. S., Miller, E. R., Benessiano, J., Tedgui, A., Witztum, J. L., Khaw, K. T., & Boekholdt, S. M. (2010). Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. Journal of the American College of Cardiology, 56, 946–955.

    Article  CAS  PubMed  Google Scholar 

  77. Briley-Saebo, K. C., Shaw, P. X., Mulder, W. J., Choi, S. H., Vucic, E., Aguinaldo, J. G., Witztum, J. L., Fuster, V., Tsimikas, S., & Fayad, Z. A. (2008). Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation, 117, 3206–3215.

    Article  CAS  PubMed  Google Scholar 

  78. Friedman, P., Horkko, S., Steinberg, D., Witztum, J. L., & Dennis, E. A. (2002). Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. The Journal of Biological Chemistry, 277, 7010–7020.

    Article  CAS  PubMed  Google Scholar 

  79. Amir, S., Hartvigsen, K., Gonen, A., Leibundgut, G., Que, X., Jensen-Jarolim, E., Wagner, O., Tsimikas, S., Witztum, J. L., & Binder, C. J. (2012). Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease. Journal of Lipid Research, 53, 1316–1326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Crisby, M., Nordin-Fredriksson, G., Shah, P. K., Yano, J., Zhu, J., & Nilsson, J. (2001). Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation, 103, 926–933.

    Article  CAS  PubMed  Google Scholar 

  81. Mintz, G. S., Pichard, A. D., Popma, J. J., Kent, K. M., Satler, L. F., Bucher, T. A., & Leon, M. B. (1997). Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. Journal of the American College of Cardiology, 29, 268–274.

    Article  CAS  PubMed  Google Scholar 

  82. Briley-Saebo, K. C., Geninatti-Crich, S., Cormode, D. P., Barazza, A., Mulder, W. J., Chen, W., Giovenzana, G. B., Fisher, E. A., Aime, S., & Fayad, Z. A. (2009). High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. The Journal of Physical Chemistry. B, 113, 6283–6289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Nguyen, T. H., Bryant, H., Shapsa, A., Street, H., Mani, V., Fayad, Z. A., Frank, J. A., Tsimikas, S., & Briley-Saebo, K. C. (2014). Manganese G8 dendrimers targeted to oxidation-specific epitopes: In vivo MR imaging of atherosclerosis. J Magn Reson Imaging. doi:10.1002/jmri.24606.

  84. Turner, W. W., Hartvigsen, K., Boullier, A., Montano, E. N., Witztum, J. L., & Vannieuwenhze, M. S. (2012). Design and synthesis of a stable oxidized phospholipid mimic with specific binding recognition for macrophage scavenger receptors. Journal of Medicinal Chemistry, 55, 8178–8182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Briley-Saebo, K. C., Johansson, L. O., Hustvedt, S. O., Haldorsen, A. G., Bjornerud, A., Fayad, Z. A., & Ahlstrom, H. K. (2006). Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism. Investigative Radiology, 41, 560–571.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Drs. Tsimikas and Witztum are co-inventors of and receive royalties from patents on oxidation-specific antibodies and mimotopes owned by the University of California San Diego. Dr. Tsimikas holds a dual appointment at the University of California San Diego and as an employee of Isis Pharmaceuticals, Inc. Dr. Witztum has received honoraria for consulting for Isis Pharmaceuticals, Inc., Regulus Therapeutics Inc., and Intercept Pharmaceuticals. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Sources of Funding and Disclosure

This study was funded by grants from the National Institutes of Health R01-HL119828, R01-HL093767, P01-HL055798, P01-HL088093, and U54-HL119893 (to Drs. Witztum and Tsimikas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Tsimikas.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briley-Saebo, K., Yeang, C., Witztum, J.L. et al. Imaging of Oxidation-Specific Epitopes with Targeted Nanoparticles to Detect High-Risk Atherosclerotic Lesions: Progress and Future Directions. J. of Cardiovasc. Trans. Res. 7, 719–736 (2014). https://doi.org/10.1007/s12265-014-9590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9590-4

Keywords

Navigation