Skip to main content

Advertisement

Log in

Gender and Anti-thrombotic Therapy: from Biology to Clinical Implications

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases actually remain the leading cause of death and morbidity in Western countries, and it is the most common cause of death in American women accounting for about one third of all deaths. Women remain underrepresented in published trial literature relative to their disease prevalence. Strong evidence do exists demonstrating gender differences in efficacy (ischemic risk) and safety (bleeding risk) associated with antithrombotic treatment, mostly related to different values of body mass, and renal function in women than men. Several data show a higher platelet reactivity in females and a higher prevalence of high platelet reactivity on aspirin and clopidogrel therapy. In primary prevention, the use of aspirin is associated with a higher reduction of risk for ischemic stroke in females and for myocardial infarction in males. In the setting of ACS, female gender is associated with a significantly higher risk of bleeding. In summary, there are some gender-related aspects of guidance in the complex spectrum of the net clinical benefit related to antithrombotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Department of Health and Human Services CDC. Leading causes of death in females. United States, 2004. www.cdc.gov/women/lcod.htm

  2. Ford, E. S., & Capewell, S. (2007). Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. Journal of the American College of Cardiology, 50(22), 2128–2132.

    Article  PubMed  Google Scholar 

  3. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., Wylie-Rosett, J., et al. (2011). Heart disease and stroke statistics—2011 update: a report from the American Heart Association. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation., 123(4), e18–e209.

    Google Scholar 

  4. Goldberg, R. J., Yarzebski, J., Lessard, D. D., & Gore, J. M. (1999). A two-decades (1975 to 1995) long experience in the incidence, in-hospital and long-term case-fatality rates of acute myocardial infarction: a community-wide perspective. Journal of the American College of Cardiology, 33, 1533–1539.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, P. Y., Alexander, K. P., Hammill, B. B. G., Pasquali, S. K., & Peterson, E. D. (2001). Representation of elderly persons and women in published randomized trials of acute coronary syndromes. JAMA, 286, 708–713.

    Article  CAS  Google Scholar 

  6. Wessel, T. R., Arant, C. B., McGorray, S. P., Sharaf, B. L., Reis, S. E., Kerensky, R. A., NHLBI Women's Ischemia Syndrome Evaluation (WISE), et al. (2007). Coronary microvascular reactivity is only partially predicted by atherosclerosis risk factors or coronary artery disease in women evaluated for suspected ischemia: results from the NHLBI Women's Ischemia Syndrome Evaluation (WISE). Clinical Cardiology, 30(2), 69–74.

    Article  PubMed  Google Scholar 

  7. BaireyMerz, C. N., Johnson, B. D., Sharaf, B. L., et al. (2003). Hypoestrogenemia of hypothalamic origin and coronary artery disease in premenopausal women: a report from the NHLBI-sponsored WISE Study. Journal of the American College of Cardiology, 41, 413–419.

    Article  Google Scholar 

  8. Shaw, L. J., BaireyMerz, C. N., Azziz, R., et al. (2008). Postmenopausal women with a history of irregular menses and elevated androgen measurements at high risk for worsening cardiovascular event-free survival: results from the National Institutes of Health–National Heart, Lung, and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation. Journal of Clinical Endocrinology and Metabolism, 93, 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  9. Miller, V. M., Garovic, V. D., Kantarci, K., Barnes, J. N., Jayachandran, M., Mielke, M. M., et al. (2013). Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause. Biology of Sex Differences, 4(1), 6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ross, L. A., & Polotsky, A. J. (2012). Metabolic correlates of menopause: an update. Current Opinion in Obstetrics and Gynecology, 24(6), 402–407.

    Article  PubMed  Google Scholar 

  11. Komukai, K., Mochizuki, S., & Yoshimura, M. (2010). Gender and the renin-angiotensin-aldosterone system. Fundamental and Clinical Pharmacology, 24(6), 687–698.

    Article  CAS  PubMed  Google Scholar 

  12. Vitale, C., Mendelsohn, M. E., & Rosano, G. M. (2009). Gender differences in the cardiovascular effect of sex hormones. Nature Reviews Cardiology, 6(8), 532–542.

    Article  CAS  PubMed  Google Scholar 

  13. Bucciarelli, P., & Mannucci, P. M. (2009). The hemostatic system through aging and menopause. Climacteric, 12(Suppl 1), 47–51.

    Article  CAS  PubMed  Google Scholar 

  14. Miller, V. M., Jayachandran, M., & Owen, W. G. (2007). Ageing, oestrogen, platelets and thrombotic risk. Clinical and Experimental Pharmacology and Physiology, 34(8), 814–821.

    Article  CAS  PubMed  Google Scholar 

  15. Miller, V. M., Jayachandran, M., Hashimoto, K., Heit, J. A., & Owen, W. G. (2008). Estrogen, inflammation, and platelet phenotype. Gender Medicine, 5(Suppl A), S91–S102.

    Article  PubMed  Google Scholar 

  16. Biino, G., Santimone, I., Minelli, C., Sorice, R., Frongia, B., Traglia, M., et al. (2013). Age- and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects' data. PLoS One, 8(1), e54289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Segal, J. B., & Moliterno, A. R. (2006). Platelet counts differ by sex, ethnicity, and age in the United States. Annals of Epidemiology, 16(2), 123–130.

    Article  PubMed  Google Scholar 

  18. Bobbert, P., Stellbaum, C., Steffens, D., Schütte, C., Bobbert, T., Schultheiss, H. P., et al. (2012). Postmenopausal women have an increased maximal platelet reactivity compared to men despite dual antiplatelet therapy. Blood Coagulation and Fibrinolysis, 23(8), 723–728.

    Article  CAS  PubMed  Google Scholar 

  19. Singla, A., Bliden, K. P., Jeong, Y. H., Abadilla, K., Antonino, M. J., Muse, W. C., et al. (2013). Platelet reactivity and thrombogenicity in postmenopausal women. Menopause, 20(1), 57–63.

    Article  PubMed  Google Scholar 

  20. Breet, N. J., Sluman, M. A., van Berkel, M. A., van Werkum, J. W., Bouman, H. J., Harmsze, A. M., et al. (2011). Effect of gender difference on platelet reactivity. Netherlands Heart Journal, 19(11), 451–457.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Leng, X. H., Hong, S. Y., Larrucea, S., Zhang, W., Li, T. T., Lopez, J. A., et al. (2004). Platelets of female mice are intrinsecally more sensitive to agonists than are platelets of males. Arteriosclòer Thromb Vasc Biol, 24, 376–381.

    Article  CAS  Google Scholar 

  22. Johnson, M., Ramey, E., & Ramwell, P. W. (1975). Sex and age differences in human platelet aggregation. Nature, 253, 355–357.

    Article  CAS  PubMed  Google Scholar 

  23. Faraday, N., Goldschmidt-Clermont, P. J., & Bray, P. F. (1997). Sex differences in platelet GpIIb/IIIa activation. Thrombosis and Haemostasis, 77, 748–754.

    CAS  PubMed  Google Scholar 

  24. Kurrelmeyer, K., Becker, L., Becker, D., Yanek, L., Goldschmidt-Clermont, P., & Bray, P. F. (2003). Platelet hyperreactivity in women from families with premature atherosclerosis. Journal of the American Medical Womens Association, 58, 272–277.

    Google Scholar 

  25. Eidelman, O., Jozwik, C., Huang, W., Srivastava, M., Rothwell, S. W., Jacobowitz, D. M., et al. (2010). Gender dependence for a subset of a low-abundance signaling proteome in human platelets. Human Genomics and Proteomics, 2010, 164906.

    Article  PubMed  Google Scholar 

  26. Hobson, A. R., Qureshi, Z., Banks, P., & Curzen, N. (2009). Gender and responses to aspirin and clopidogrel: insights using short thromboelastography. Cardiovascular Therapeutics, 27, 246–252.

    Article  CAS  PubMed  Google Scholar 

  27. Gurbel, P. A., Bliden, K. P., Cohen, E., Navickas, I. A., Singla, A., Antonino, M. J., et al. (2008). Race and sex differences in thrombogenicity: risk of ischemic events following coronary stenting. Blood Coagulation and Fibrinolysis, 19, 268–275.

    Article  PubMed  Google Scholar 

  28. Becker, D. M., Segal, J., Vaidya, D., Yanek, L. R., Herrera-Galeano, J. E., Bray, P. F., et al. (2006). Sex differences in platelet reactivity and response to low dose aspirin therapy. JAMA, 295, 1420–1427.

    Article  CAS  PubMed  Google Scholar 

  29. Morikawa, M., Kojima, T., Inoue, M., & Tsuboi, M. (1986). Sex difference in the effect of aspirin on intracellular Ca2+ mobilization and thromboxane A2 production in rat platelets. Japanese Journal of Pharmacology, 40, 463–468.

    Article  CAS  PubMed  Google Scholar 

  30. Kelton, J. G., Hirsh, J., Carter, C. J., & Buchanan, M. R. (1978). Sex differences in the antithrombotic effects of aspirin. Blood, 52, 1073–1076.

    CAS  PubMed  Google Scholar 

  31. Gonzalez-Correa, J. A., Arrebola, M. M., Munz-Marin, J., Moreno, A., Guerreo, A., Arranz, I., et al. (2007). Gender differences in the effect of aspirin on retinal ischemia, prostanoid synthesis and nitric oxide production in experimental type 1-like diabetes. Vascular Pharmacology, 47, 83–89.

    Article  CAS  PubMed  Google Scholar 

  32. Miners, J. O., Grugurinovich, N., Whitehead, A. G., Robson, R. A., & Birkett, D. J. (1986). Influence of gender and oral contraceptives steroids on the metabolism of salicylic acid and acetylsalicylic acid. British Journal of Clinical Pharmacology, 22, 135–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Buchanan, M. R., Rischke, J. A., Butt, R., Turpie, A. G., Hirsh, J., & Rosenfeld, J. (1983). The sex-related differences in aspirin pharmacokinetics in rabbits and man and its relationship to antiplatelet effects. Thrombosis Research, 29(2), 125–139.

    Article  CAS  PubMed  Google Scholar 

  34. Maree, A. O., & Fitzgerald, D. J. (2004). Aspirin and coronary artery disease. Thrombosis and Haemostasis, 92, 1175–1181.

    CAS  PubMed  Google Scholar 

  35. Gum, P. A., Kottke-Marchant, K., Welsh, P. A., White, J., & Topol, E. J. (2003). A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. Journal of the American College of Cardiology, 41, 961–965.

    Article  CAS  PubMed  Google Scholar 

  36. Patrono, C., Baigent, C., Hirsh, J., Roth, G., & American College of Chest Physicians. (2008). Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 133(6 Suppl), 199S–233S.

    Article  CAS  PubMed  Google Scholar 

  37. Patrono, C., García Rodríguez, L. A., Landolfi, R., & Baigent, C. (2005). Low-dose aspirin for the prevention of atherothrombosis. New England Journal of Medicine, 353(22), 2373–2383.

    Article  CAS  PubMed  Google Scholar 

  38. Antithrombotic Trialists' Collaboration. (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ, 324(7329), 71–86.

    Article  Google Scholar 

  39. Lee, P. Y., Chen, W. H., Ng, W., Cheng, X., Yat-Yin Kwok, J., Tse, H. F., et al. (2005). Low-dose aspirin increases aspirin resistance in patients with coronary artery disease. American Journal of Medicine, 118, 723–727.

    Article  CAS  PubMed  Google Scholar 

  40. Mehta, S. S., Silver, R. J., Aaronson, A., Abrahamson, M., & Goldfine, A. B. (2006). Comparison of aspirin resistance in type 1 versus type 2 diabetes mellitus. American Journal of Cardiology, 97, 567–570.

    Article  CAS  PubMed  Google Scholar 

  41. Bhatt, D. L., Fox, K. A., Hacke, W., Berger, P. B., Black, H. R., Boden, W. E., Topol, E. J., CHARISMA Investigators, et al. (2006). Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. New England Journal of Medicine, 354(16), 1706–1717.

    Article  CAS  PubMed  Google Scholar 

  42. Eikelboom, J. W., Hankey, G. J., Thom, J., Bhatt, D. L., Steg, P. G., Montalescot, G., Topol, E. J., Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance (CHARISMA) Investigators, et al. (2008). Incomplete inhibition of thromboxane biosynthesis by acetylsalicylic acid: determinants and effect on cardiovascular risk. Circulation, 118(17), 1705–1712.

    Article  CAS  PubMed  Google Scholar 

  43. ISIS-2 Collaborative Group. (1988). Randomised trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet, 2, 349–360.

    Google Scholar 

  44. International Stroke Trial Collaborative Group. (1997). The International Stroke Trial (IST): a randomized trial of aspirin, subcutaneous heparin, both or neither among 19,435 patients with acute ischaemic stroke. Lancet, 349, 1569–1581.

    Article  Google Scholar 

  45. CAST (Chinese Acute Stroke Trial) Collaborative Group. (1997). CAST: randomized placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. Lancet, 349, 1641–1649.

    Article  Google Scholar 

  46. Manson, J. E., Stampfer, M. J., Colditz, G. A., Willett, W. C., Rosner, B., Speizer, F. E., et al. (1991). A prospective study of aspirin use and primary prevention of cardiovascular disease in women. JAMA, 266, 521–527.

    Article  CAS  PubMed  Google Scholar 

  47. Kjeldsen, S. E., Kolloch, R. E., Leonetti, G., Mallion, J. M., Zanchetti, A., Elmfeldt, D., et al. (2000). Influence of gender and age on preventing cardiovascular disease by antihypertensive treatment and acetylsalicylic acid. The HOT study. Hypertension Optimal Treatment. Journal of Hypertension, 18, 629–642.

    Article  CAS  PubMed  Google Scholar 

  48. De Gaetano, G., & Collaborative Group of the Primary Prevention Project. (2001). Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomized trial in general practice. Lancet, 357, 89–95.

    Article  PubMed  Google Scholar 

  49. Ridker, P. M., Cook, N. R., Lee, I.-M., Gordon, D., Gaziano, J. M., Manson, J. E., et al. (2005). A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. New England Journal of Medicine, 352, 1293–1304.

    Article  CAS  PubMed  Google Scholar 

  50. Berger, J. S., Roncaglioni, M. C., Avanzini, F., Pangrazzi, I., Tognoni, G., & Brown, D. L. (2006). Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA, 295, 306–313.

    Article  CAS  PubMed  Google Scholar 

  51. Jochmann, N., Stangl, K., Garbe, E., Baumann, G., & Stangl, V. (2005). Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases. European Heart Journal, 26, 1585–1595.

    Article  CAS  PubMed  Google Scholar 

  52. Parodi, G., Marcucci, R., Valenti, R., Gori, A. M., Migliorini, A., Giusti, B., et al. (2011). High residual platelet reactivity after clopidogrel loading and long-term cardiovascular events among patients with acute coronary syndromes undergoing PCI. JAMA, 306, 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  53. Sofi, F., Marcucci, R., Gori, A. M., Giusti, B., Abbate, R., & Gensini, G. F. (2010). Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost, 103, 841–848.

    Article  CAS  PubMed  Google Scholar 

  54. Marcucci, R., Gori, A. M., Paniccia, R., Giusti, B., Valente, S., Giglioli, C., et al. (2009). Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay: a 12-month follow-up. Circulation, 119, 237–242.

    Article  PubMed  Google Scholar 

  55. Aradi, D., Komócsi, A., Vorobcsuk, A., & Serebruany, V. L. (2013). Impact of clopidogrel and potent P2Y 12 -inhibitors on mortality and stroke in patients with acute coronary syndrome or undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Thromb Haemost, 109, 93–101.

    Article  CAS  PubMed  Google Scholar 

  56. Giusti, B., Gori, A. M., Marcucci, R., & Abbate, R. (2010). Relation of CYP2C19 loss-of-function polymorphism to the occurrence of stent thrombosis. Expert Opin Drug Metab Toxicol, 6, 393–407.

    Article  CAS  PubMed  Google Scholar 

  57. Marcucci, R., Giusti, B., Paniccia, R., Gori, A. M., Saracini, C., Valente, S., et al. (2012). High on-treatment platelet reactivity by ADP and increased risk of MACE in good clopidogrel metabolizers. Platelets, 23, 586–593.

    Article  CAS  PubMed  Google Scholar 

  58. Marcucci, R., Cenci, C., Cioni, G., Lombardi, A., Giusti, B., & Gensini, G. F. (2012). Antiplatelets in acute coronary syndrome: personal perspectives. Expert Rev Cardiovasc Ther, 10, 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  59. Paniccia, R., Antonucci, E., Gori, A. M., Marcucci, R., Giglioli, C., Antoniucci, D., et al. (2007). Different methodologies for evaluating the effect of clopidogrel on platelet function in high-risk coronary artery disease patients. Journal of Thrombosis and Haemostasis, 5, 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  60. Paniccia, R., Antonucci, E., Maggini, N., Miranda, M., Gori, A. M., Marcucci, R., et al. (2010). Comparison of methods for monitoring residual platelet reactivity after clopidogrel by point-of-care tests on whole blood in high-risk patients. Thrombosis and Haemostasis, 104, 287–292.

    Article  CAS  PubMed  Google Scholar 

  61. Patti, G., Nusca, A., Mangiacapra, F., Gatto, L., D'Ambrosio, A., & Di Sciascio, G. (2008). Point-of-care measurement of clopidogrel responsiveness predicts clinical outcome in patients undergoing percutaneous coronary intervention results of the ARMYDA-PRO (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty-Platelet Reactivity Predicts Outcome) study. Journal of the American College of Cardiology, 52, 1128–1133.

    Article  CAS  PubMed  Google Scholar 

  62. Sibbing, D., Koch, W., Gebhard, D., Schuster, T., Braun, S., Stegherr, J., et al. (2010). Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation, 121, 512–518.

    Article  CAS  PubMed  Google Scholar 

  63. Parodi, G., Bellandi, B., Venditti, F., Carrabba, N., Valenti, R., Migliorini, A., et al. (2012). Residual platelet reactivity, bleedings, and adherence to treatment in patients having coronary stent implantation treated with prasugrel. American Journal of Cardiology, 109(2), 214–218.

    Article  CAS  PubMed  Google Scholar 

  64. Berger, J. S., Bhatt, D. L., Cannon, C. P., Chen, Z., Jiang, L., Jones, J. B., et al. (2009). The relative efficacy and safety of clopidogrel in women and men: a sex-specific collaborative meta-analysis. Journal of the American College of Cardiology, 54, 1935–1945.

    Article  CAS  PubMed  Google Scholar 

  65. Subherwal, S., Bach, R. G., Chen, A. Y., Gage, B. F., Rao, S. V., Newby, L. K., et al. (2009). Baseline risk of major bleeding in non-ST-segment elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress Adverse outcomes with Early implementation of the ACC/AHA guidelines) bleeding score. Circulation, 119, 1873–1882.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Alexander, K. P., Chen, A. Y., Newby, L. K., Schwartz, J. B., Redberg, R. F., Hochman, J. S., CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA guidelines) Investigators, et al. (2006). Sex differences in major bleeding with glycoprotein IIb/IIIa inhibitors: results from the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA guidelines) initiative. Circulation, 114(13), 1380–1387.

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed, B., Piper, W. D., Malenka, D., VerLee, P., Robb, J., Ryan, T., et al. (2009). Significantly improved vascular complications among women undergoing percutaneous coronary intervention: a report from the Northern New England Percutaneous Coronary Intervention Registry. Circulation: Cardiovascular Interventions, 2(5), 423–429.

    Google Scholar 

  68. Bowyer, L., Brown, M. A., & Jones, M. (2001). Vascular reactivity in men and women of reproductive age. American Journal of Obstetrics and Gynecology, 185(1), 88–96.

    Article  CAS  PubMed  Google Scholar 

  69. Angiolillo, D. J., Fernández-Ortiz, A., Bernardo, E., Barrera Ramírez, C., Sabaté, M., Fernandez, C., et al. (2004). Platelet aggregation according to body mass index in patients undergoing coronary stenting: should clopidogrel loading-dose be weight adjusted? Journal of Invasive Cardiology, 16(4), 169–174.

    PubMed  Google Scholar 

  70. Boersma, E., Harrington, R. A., Moliterno, D. J., White, H., & Simoons, M. L. (2002). Platelet glycoprotein IIb=IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet, 359, 189–198.

    Article  CAS  PubMed  Google Scholar 

  71. Hara, K., Akiyama, Y., & Tajima, T. (1994). Sex differences in the anticoagulant effects of warfarin. Japanese Journal of Pharmacology, 66(3), 387–392.

    Article  CAS  PubMed  Google Scholar 

  72. Sullivan, R. M., Zhang, J., Zamba, G., Lip, G. Y., & Olshansky, B. (2012). Relation of gender-specific risk of ischemic stroke in patients with atrial fibrillation to differences in warfarin anticoagulation control (from AFFIRM). American Journal of Cardiology, 110(12), 1799–1802.

    Article  CAS  PubMed  Google Scholar 

  73. Fang, M. C., Singer, D. E., Chang, Y., Hylek, E. M., Henault, L. E., Jensvold, N. G., et al. (2005). Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation: the AnTicoagulation and Risk factors In Atrial fibrillation (ATRIA) study. Circulation, 112(12), 1687–1691.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Volgman, A. S., Manankil, M. F., Mookherjee, D., & Trohman, R. G. (2009). Women with atrial fibrillation: greater risk, less attention. Gender Medicine, 6(3), 419–432.

    Article  PubMed  Google Scholar 

  75. Poli, D., Antonucci, E., Grifoni, E., Abbate, R., Gensini, G. F., & Prisco, D. (2009). Gender differences in stroke risk of atrial fibrillation patients on oral anticoagulant treatment. Thrombosis and Haemostasis, 101(5), 938–942.

    CAS  PubMed  Google Scholar 

  76. Tsadok, M. A., Jackevicius, C. A., Essebag, V., Eisenberg, M. J., Rahme, E., Humphries, K. H., Pilote, L., et al. (2012). Rhythm versus rate control therapy and subsequent stroke or transient ischemic attack in patients with atrial fibrillation. Circulation, 126(23), 2680–2687.

    Article  PubMed  Google Scholar 

  77. Capodanno, D., & Angiolillo, D. J. (2010). Impact of race and gender on antithrombotic therapy. Thrombosis and Haemostasis, 104(3), 471–484.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, T. Y., Angiolillo, D. J., Cushman, M., Sabatine, M. S., Bray, P. F., Smyth, S. S., Becker, R. C., et al. (2012). Platelet biology and response to antiplatelet therapy in women: implications for the development and use of antiplatelet pharmacotherapies for cardiovascular disease. Journal of the American College of Cardiology, 59(10), 891–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Fiorenzo Ugolini for his contribution to the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Marcucci.

Additional information

Associate Editor Emanuele Barbato oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcucci, R., Cioni, G., Giusti, B. et al. Gender and Anti-thrombotic Therapy: from Biology to Clinical Implications. J. of Cardiovasc. Trans. Res. 7, 72–81 (2014). https://doi.org/10.1007/s12265-013-9534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9534-4

Keywords

Navigation