Skip to main content
Log in

Antiplatelet Therapy: Targeting the TxA2 Pathway

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The thromboxane (Tx) A2 pathway is a major contributor to the amplification of the initial platelet activation process. TxA2 mediates its effect through the thromboxane prostanoid (TP) receptor that is expressed not only in platelets, but also in endothelial cells, macrophages, and monocytes, and thus contributes to the development of atherosclerotic lesions. The TxA2 pathway is therefore a major target in the treatment of cardiovascular disease. Aspirin—the most widely used antiplatelet drug—is very effective at inhibiting platelet-derived TxA2 synthesis. However, aspirin’s effects can be overcome by several other soluble agonists such as isoprostanes, which are aspirin-insensitive ligands of the TP receptor that are preferentially produced in diabetes mellitus. Other drugs, with either inhibitory effects on Tx synthase or antagonist effects on TP, have been developed with the hope of providing a better, more complete inhibition of the TxA2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hansson, G. K., Robertson, A. K., & Soderberg-Naucler, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology, 1, 297–329. doi:10.1146/annurev.pathol.1.110304.100100.

    Article  CAS  PubMed  Google Scholar 

  2. Libby, P. (2012). Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2045–2051. doi:10.1161/ATVBAHA.108.179705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Coppinger, J. A., & Maguire, P. B. (2007). Insights into the platelet releasate. Current Pharmaceutical Design, 13(26), 2640–2646.

    Article  CAS  PubMed  Google Scholar 

  4. Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine, 352(16), 1685–1695.

    Article  CAS  PubMed  Google Scholar 

  5. Kirkby, N. S., Leadbeater, P. D., Chan, M. V., Nylander, S., Mitchell, J. A., & Warner, T. D. (2011). Antiplatelet effects of aspirin vary with level of P2Y(1)(2) receptor blockade supplied by either ticagrelor or prasugrel. Journal of Thrombosis and Haemostasis, 9(10), 2103–2105. doi:10.1111/j.1538-7836.2011.04453.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Armstrong, P. C., Leadbeater, P. D., Chan, M. V., Kirkby, N. S., Jakubowski, J. A., Mitchell, J. A., et al. (2011). In the presence of strong P2Y12 receptor blockade, aspirin provides little additional inhibition of platelet aggregation. Journal of Thrombosis and Haemostasis, 9(3), 552–561. doi:10.1111/j.1538-7836.2010.04160.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Maclouf, J., Folco, G., & Patrono, C. (1998). Eicosanoids and iso-eicosanoids: constitutive, inducible and transcellular biosynthesis in vascular disease. Thrombosis and Haemostasis, 79(4), 691–705.

    CAS  PubMed  Google Scholar 

  8. Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Smyth, E. M. (2010). Thromboxane and the thromboxane receptor in cardiovascular disease. Journal of Clinical Lipidology, 5(2), 209–219. doi:10.2217/CLP.10.11.

    Article  CAS  Google Scholar 

  10. Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A. W., & Honn, K. V. (2011). The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer and Metastasis Reviews, 30(3–4), 397–408. doi:10.1007/s10555-011-9297-9.

    Article  CAS  PubMed  Google Scholar 

  11. Sakariassen, K. S., Alberts, P., Fontana, P., Mann, J., Bounameaux, H., & Sorensen, A. S. (2009). Effect of pharmaceutical interventions targeting thromboxane receptors and thromboxane synthase in cardiovascular and renal diseases. Future Cardiology, 5(5), 479–493. doi:10.2217/fca.09.33.

    Article  CAS  PubMed  Google Scholar 

  12. Rocca, B., Secchiero, P., Ciabattoni, G., Ranelletti, F. O., Catani, L., Guidotti, L., et al. (2002). Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7634–7639. doi:10.1073/pnas.112202999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. McAdam, B. F., Mardini, I. A., Habib, A., Burke, A., Lawson, J. A., Kapoor, S., et al. (2000). Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. The Journal of Clinical Investigation, 105(10), 1473–1482. doi:10.1172/JCI9523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chandrasekharan, N. V., Dai, H., Roos, K. L., Evanson, N. K., Tomsik, J., Elton, T. S., et al. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13926–13931. doi:10.1073/pnas.162468699.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Botting, R., & Ayoub, S. S. (2005). COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 72(2), 85–87. doi:10.1016/j.plefa.2004.10.005.

    Article  CAS  PubMed  Google Scholar 

  16. Capra, V., Back, M., Barbieri, S. S., Camera, M., Tremoli, E., & Rovati, G. E. (2013). Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Medicinal Research Reviews, 33(2), 364–438. doi:10.1002/med.21251.

    Article  CAS  PubMed  Google Scholar 

  17. Audoly, L. P., Rocca, B., Fabre, J. E., Koller, B. H., Thomas, D., Loeb, A. L., et al. (2000). Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation, 101(24), 2833–2840.

    Article  CAS  PubMed  Google Scholar 

  18. Narumiya, S. (1994). Prostanoid receptors. Structure, function, and distribution. Annals of the New York Academy of Sciences, 744, 126–138.

    Article  CAS  PubMed  Google Scholar 

  19. Nusing, R. M., Hirata, M., Kakizuka, A., Eki, T., Ozawa, K., & Narumiya, S. (1993). Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. The Journal of Biological Chemistry, 268(33), 25253–25259.

    CAS  PubMed  Google Scholar 

  20. Unoki, M., Furuta, S., Onouchi, Y., Watanabe, O., Doi, S., Fujiwara, H., et al. (2000). Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: positive association a T924C polymorphism in the thromboxane A2 receptor gene. Human Genetics, 106(4), 440–446.

    Article  CAS  PubMed  Google Scholar 

  21. Fontana, P., Gandrille, S., Remones, V., Dupont, A., Reny, J. L., Aiach, M., et al. (2006). Identification of functional polymorphisms of the thromboxane A2 receptor gene in healthy volunteers. Thrombosis and Haemostasis, 96(3), 356–360.

    CAS  PubMed  Google Scholar 

  22. Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., et al. (1991). Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 349(6310), 617–620.

    Article  CAS  PubMed  Google Scholar 

  23. Raychowdhury, M. K., Yukawa, M., Collins, L. J., McGrail, S. H., Kent, K. C., & Ware, J. A. (1994). Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. The Journal of Biological Chemistry, 269(30), 19256–19261.

    CAS  PubMed  Google Scholar 

  24. Hirata, T., Ushikubi, F., Kakizuka, A., Okuma, M., & Narumiya, S. (1996). Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. The Journal of Clinical Investigation, 97(4), 949–956.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Habib, A., FitzGerald, G. A., & Maclouf, J. (1999). Phosphorylation of the thromboxane receptor alpha, the predominant isoform expressed in human platelets. The Journal of Biological Chemistry, 274(5), 2645–2651.

    Article  CAS  PubMed  Google Scholar 

  26. Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacology and Therapeutics, 118(1), 18–35. doi:10.1016/j.pharmthera.2008.01.001.

    Article  CAS  PubMed  Google Scholar 

  27. Patrono, C. (1994). Aspirin as an antiplatelet drug. The New England Journal of Medicine, 330(18), 1287–1294.

    Article  CAS  PubMed  Google Scholar 

  28. Rocca, B., Santilli, F., Pitocco, D., Mucci, L., Petrucci, G., Vitacolonna, E., et al. (2012). The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. Journal of Thrombosis and Haemostasis, 10(7), 1220–1230. doi:10.1111/j.1538-7836.2012.04723.x.

    Article  CAS  PubMed  Google Scholar 

  29. Pascale, S., Petrucci, G., Dragani, A., Habib, A., Zaccardi, F., Pagliaccia, F., et al. (2012). Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood, 119(15), 3595–3603. doi:10.1182/blood-2011-06-359224.

    Article  CAS  PubMed  Google Scholar 

  30. Davi, G., Santilli, F., & Vazzana, N. (2012). Thromboxane receptors antagonists and/or synthase inhibitors. Handbook of Experimental Pharmacology, 210, 261–286. doi:10.1007/978-3-642-29423-5_11.

    Article  CAS  PubMed  Google Scholar 

  31. Rolin, S., Masereel, B., & Dogne, J. M. (2006). Prostanoids as pharmacological targets in COPD and asthma. European Journal of Pharmacology, 533(1–3), 89–100. doi:10.1016/j.ejphar.2005.12.058.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J., Yang, J., Chang, X., Zhang, C., Zhou, H., & Liu, M. (2012). Ozagrel for acute ischemic stroke: a meta-analysis of data from randomized controlled trials. Neurological Research, 34(4), 346–353. doi:10.1179/1743132812Y.0000000022.

    Article  CAS  PubMed  Google Scholar 

  33. FitzGerald, G. A., Reilly, I. A., & Pedersen, A. K. (1985). The biochemical pharmacology of thromboxane synthase inhibition in man. Circulation, 72(6), 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  34. Cayatte, A. J., Du, Y., Oliver-Krasinski, J., Lavielle, G., Verbeuren, T. J., & Cohen, R. A. (2000). The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(7), 1724–1728.

    Article  CAS  PubMed  Google Scholar 

  35. Viles-Gonzalez, J. F., Fuster, V., Corti, R., Valdiviezo, C., Hutter, R., Corda, S., et al. (2005). Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition—a magnetic resonance imaging study. European Heart Journal, 26(15), 1557–1561. doi:10.1093/eurheartj/ehi175.

    Article  CAS  PubMed  Google Scholar 

  36. Gaussem, P., Reny, J. L., Thalamas, C., Chatelain, N., Kroumova, M., Jude, B., et al. (2005). The specific thromboxane receptor antagonist S18886: pharmacokinetic and pharmacodynamic studies. Journal of Thrombosis and Haemostasis, 3(7), 1437–1445.

    Article  CAS  PubMed  Google Scholar 

  37. Fiessinger, J. N., Bounameaux, H., Cairols, M. A., Clement, D. L., Coccheri, S., Fletcher, J. P., et al. (2010). Thromboxane antagonism with terutroban in peripheral arterial disease: the TAIPAD study. Journal of Thrombosis and Haemostasis, 8(11), 2369–2376. doi:10.1111/j.1538-7836.2010.04020.x.

    Article  CAS  PubMed  Google Scholar 

  38. Bal Dit Sollier, C., Crassard, I., Simoneau, G., Bergmann, J. F., Bousser, M. G., & Drouet, L. (2009). Effect of the thromboxane prostaglandin receptor antagonist terutroban on arterial thrombogenesis after repeated administration in patients treated for the prevention of ischemic stroke. Cerebrovascular Diseases, 28(5), 505–513. doi:10.1159/000236915.

    Article  CAS  PubMed  Google Scholar 

  39. Bousser, M. G., Amarenco, P., Chamorro, A., Fisher, M., Ford, I., Fox, K. M., et al. (2011). Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet, 377(9782), 2013–2022. doi:10.1016/S0140-6736(11)60600-4.

    Article  CAS  PubMed  Google Scholar 

  40. Meadows, T. A., & Bhatt, D. L. (2007). Clinical aspects of platelet inhibitors and thrombus formation. Circulation Research, 100(9), 1261–1275. doi:10.1161/01.RES.0000264509.36234.51.

    Article  CAS  PubMed  Google Scholar 

  41. The Ridogrel Versus Aspirin Patency Trial (RAPT). (1994). Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. Circulation, 89(2), 588–595.

    Article  Google Scholar 

  42. Neri Serneri, G. G., Coccheri, S., Marubini, E., & Violi, F. (2004). Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease: the DAVID study. European Heart Journal, 25(20), 1845–1852.

    Article  CAS  PubMed  Google Scholar 

  43. Fontana, P., & Reny, J. L. (2007). New antiplatelet strategies in atherothrombosis and their indications. European Journal of Vascular and Endovascular Surgery, 34(1), 10–17.

    Article  CAS  PubMed  Google Scholar 

  44. Fontana, P., Alberts, P., Sakariassen, K. S., Bounameaux, H., Meyer, J. P., & Santana Sorensen, A. (2011). The dual thromboxane receptor antagonist and thromboxane synthase inhibitor EV-077 is a more potent inhibitor of platelet function than aspirin. Journal of Thrombosis and Haemostasis. doi:10.1111/j.1538-7836.2011.04446.x.

    Google Scholar 

  45. Tello-Montoliu, A., Rollini, F., Desai, B., Pasqualino, G., Patel, R., Sorensen, A. S., et al. (2012). Pharmacodynamic effects of EV-077: results of an in vitro pilot investigation in healthy volunteers. Journal of Thrombosis and Thrombolysis, 34(3), 297–299. doi:10.1007/s11239-012-0795-6.

    Article  PubMed  Google Scholar 

  46. Richardson, A., Sakariassen, K. S., Meyer, J. P., Alberts, P., & Sorensen, A. S. (2013). Single ascending oral dose pharmacokinetics and pharmacodynamics study of EV-077: the specific inhibitor of prostanoid- and isoprostane-induced cellular activation. European Journal of Clinical Pharmacology, 69(3), 459–465. doi:10.1007/s00228-012-1348-9.

    Article  CAS  PubMed  Google Scholar 

  47. Rollini, F., Tello-Montoliu, A., Patel, R., Darlington, A., Wilson, R. E., Franchi, F., et al. (2013). Pharmacodynamic effects of EV-077 in patients with diabetes mellitus and coronary artery disease on aspirin or clopidogrel monotherapy: results of an in vitro pilot investigation. Journal of Thrombosis and Thrombolysis. doi:10.1007/s11239-013-0979-8.

    Google Scholar 

  48. Sakariassen, K. S., Femia, E. A., Daray, F. M., Podda, G. M., Razzari, C., Pugliano, M., et al. (2012). EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin. Thrombosis Research, 130(5), 746–752. doi:10.1016/j.thromres.2012.08.309.

    Article  CAS  PubMed  Google Scholar 

  49. Elwood, P. C., Cochrane, A. L., Burr, M. L., Sweetnam, P. M., Williams, G., Welsby, E., et al. (1974). A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction. British Medical Journal, 1(5905), 436–440.

    Article  CAS  PubMed  Google Scholar 

  50. Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., Borger, M. A., et al. (2012). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 33(20), 2569–2619. doi:10.1093/eurheartj/ehs215.

    Article  CAS  PubMed  Google Scholar 

  51. Baigent, C., Blackwell, L., Collins, R., Emberson, J., Godwin, J., Peto, R., et al. (2009). Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet, 373(9678), 1849–1860. doi:10.1016/S0140-6736(09)60503-1.

    Article  PubMed  Google Scholar 

  52. Fowkes, F. G., Price, J. F., Stewart, M. C., Butcher, I., Leng, G. C., Pell, A. C., et al. (2010). Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA, 303(9), 841–848. doi:10.1001/jama.2010.221.

    Article  CAS  PubMed  Google Scholar 

  53. Perk, J., De Backer, G., Gohlke, H., Graham, I., Reiner, Z., Verschuren, M., et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version, 2012) The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Heart Journal, 33(13), 1635–1701. doi:10.1093/eurheartj/ehs092.

    Article  CAS  PubMed  Google Scholar 

  54. U.S. Preventive Services Task Force. (2009). Aspirin for the prevention of cardiovascular disease: recommendation statement. Annals of Internal Medicine, 150(6), 396–404.

    Article  Google Scholar 

  55. De Berardis, G., Sacco, M., Strippoli, G. F., Pellegrini, F., Graziano, G., Tognoni, G., et al. (2009). Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials. BMJ, 339, b4531. doi:10.1136/bmj.b4531.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41. doi:10.1016/S0140-6736(10)62110-1.

    Article  CAS  PubMed  Google Scholar 

  57. Brighton, T. A., Eikelboom, J. W., Mann, K., Mister, R., Gallus, A., Ockelford, P., et al. (2012). Low-dose aspirin for preventing recurrent venous thromboembolism. The New England Journal of Medicine, 367(21), 1979–1987. doi:10.1056/NEJMoa1210384.

    Article  CAS  PubMed  Google Scholar 

  58. Helgason, C. M., Tortorice, K. L., Winkler, S. R., Penney, D. W., Schuler, J. J., McClelland, T. J., et al. (1993). Aspirin response and failure in cerebral infarction. Stroke, 24(3), 345–350.

    Article  CAS  PubMed  Google Scholar 

  59. Michelson, A. D., Cattaneo, M., Eikelboom, J. W., Gurbel, P., Kottke-Marchant, K., Kunicki, T. J., et al. (2005). Aspirin resistance: position paper of the Working Group on Aspirin Resistance. Journal of Thrombosis and Haemostasis, 3(6), 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  60. Patrono, C., Garcia Rodriguez, L. A., Landolfi, R., & Baigent, C. (2005). Low-dose aspirin for the prevention of atherothrombosis. The New England Journal of Medicine, 353(22), 2373–2383.

    Article  CAS  PubMed  Google Scholar 

  61. Hovens, M. M., Snoep, J. D., Eikenboom, J. C., van der Bom, J. G., Mertens, B. J., & Huisman, M. V. (2007). Prevalence of persistent platelet reactivity despite use of aspirin: a systematic review. American Heart Journal, 153(2), 175–181.

    Article  CAS  PubMed  Google Scholar 

  62. Eikelboom, J. W., Hirsh, J., Weitz, J. I., Johnston, M., Yi, Q., & Yusuf, S. (2002). Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation, 105(14), 1650–1655.

    Article  CAS  PubMed  Google Scholar 

  63. Snoep, J. D., Hovens, M. M., Eikenboom, J. C., van der Bom, J. G., & Huisman, M. V. (2007). Association of laboratory-defined aspirin resistance with a higer risk of recurrent cardiovascular events. A systematic review and meta-analysis. Archives of Internal Medicine, 167(15), 1593–1599.

    Article  PubMed  Google Scholar 

  64. Reny, J. L., De Moerloose, P., Dauzat, M., & Fontana, P. (2008). Use of the PFA-100 closure time to predict cardiovascular events in aspirin-treated cardiovascular patients: a systematic review and meta-analysis. Journal of Thrombosis and Haemostasis, 6(3), 444–450. doi:10.1111/j.1538-7836.2008.02897.x.

    Article  PubMed  Google Scholar 

  65. Reny, J. L., Berdague, P., Poncet, A., Barazer, I., Nolli, S., Fabbro-Peray, P., et al. (2012). Antiplatelet drug response status does not predict recurrent ischemic events in stable cardiovascular patients: results of the Antiplatelet Drug Resistances and Ischemic Events Study. Circulation, 125(25), 3201–3210. doi:10.1161/CIRCULATIONAHA.111.085464.

    Article  CAS  PubMed  Google Scholar 

  66. Pettersen, A. A., Seljeflot, I., Abdelnoor, M., & Arnesen, H. (2012). High on-aspirin platelet reactivity and clinical outcome in patients with stable coronary artery disease: results from ASCET (Aspirin Nonresponsiveness and Clopidogrel Endpoint Trial). Journal of the American Heart Association, 1(3), e000703. doi:10.1161/JAHA.112.000703.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Stone, G. W., Witzenbichler, B., Weisz, G., Rinaldi, M. J., Neumann, F. J., Metzger, D. C., et al. (2013). Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet, 382(9892), 614–623. doi:10.1016/S0140-6736(13)61170-8.

    Article  PubMed  Google Scholar 

  68. Capodanno, D., Patel, A., Dharmashankar, K., Ferreiro, J. L., Ueno, M., Kodali, M., et al. (2011). Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circulation. Cardiovascular Interventions, 4(2), 180–187. doi:10.1161/CIRCINTERVENTIONS.110.960187.

    Article  CAS  PubMed  Google Scholar 

  69. Faraday, N., Yanek, L. R., Mathias, R., Herrera-Galeano, J. E., Vaidya, D., Moy, T. F., et al. (2007). Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation, 115(19), 2490–2496.

    Article  CAS  PubMed  Google Scholar 

  70. Kunicki, T. J., Williams, S. A., & Nugent, D. J. (2012). Genetic variants that affect platelet function. Current Opinion in Hematology, 19(5), 371–379. doi:10.1097/MOH.0b013e3283567526.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, A. D., Yanek, L. R., Chen, M. H., Faraday, N., Larson, M. G., Tofler, G., et al. (2010). Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nature Genetics, 42(7), 608–613. doi:10.1038/ng.604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zimmerman, G. A., & Weyrich, A. S. (2008). Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), s17–s24. doi:10.1161/ATVBAHA.107.160218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kondkar, A. A., Bray, M. S., Leal, S. M., Nagalla, S., Liu, D. J., Jin, Y., et al. (2010). VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. Journal of Thrombosis and Haemostasis, 8(2), 369–378. doi:10.1111/j.1538-7836.2009.03700.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Edelstein, L. C., & Bray, P. F. (2011). MicroRNAs in platelet production and activation. Blood, 117(20), 5289–5296. doi:10.1182/blood-2011-01-292011.

    Article  CAS  PubMed  Google Scholar 

  75. Nagalla, S., Shaw, C., Kong, X., Kondkar, A. A., Edelstein, L. C., Ma, L., et al. (2011). Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 117(19), 5189–5197. doi:10.1182/blood-2010-09-299719.

    Article  CAS  PubMed  Google Scholar 

  76. Burkhart, J. M., Vaudel, M., Gambaryan, S., Radau, S., Walter, U., Martens, L., et al. (2012). The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood, 120(15), e73–e82. doi:10.1182/blood-2012-04-416594.

    Article  CAS  PubMed  Google Scholar 

  77. Mateos-Caceres, P. J., Macaya, C., Azcona, L., Modrego, J., Mahillo, E., Bernardo, E., et al. (2010). Different expression of proteins in platelets from aspirin-resistant and aspirin-sensitive patients. Thrombosis and Haemostasis, 103(1), 160–170. doi:10.1160/TH09-05-0290.

    Article  CAS  PubMed  Google Scholar 

  78. Lopez-Farre, A. J., Mateos-Caceres, P. J., Sacristan, D., Azcona, L., Bernardo, E., de Prada, T. P., et al. (2007). Relationship between vitamin D binding protein and aspirin resistance in coronary ischemic patients: a proteomic study. Journal of Proteome Research, 6(7), 2481–2487. doi:10.1021/pr060600i.

    Article  CAS  PubMed  Google Scholar 

  79. Bensimon, A., Heck, A. J., & Aebersold, R. (2012). Mass spectrometry-based proteomics and network biology. Annual Review of Biochemistry, 81, 379–405. doi:10.1146/annurev-biochem-072909-100424.

    Article  CAS  PubMed  Google Scholar 

  80. Zufferey, A., Ibberson, M., Reny, J. L., Xenarios, I., Sanchez, J. C., & Fontana, P. (2013). Unraveling modulators of platelet reactivity in cardiovascular patients using omics strategies: towards a network biology paradigm. Translational Proteomics, 1(1), 25–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fontana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, P., Zufferey, A., Daali, Y. et al. Antiplatelet Therapy: Targeting the TxA2 Pathway. J. of Cardiovasc. Trans. Res. 7, 29–38 (2014). https://doi.org/10.1007/s12265-013-9529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9529-1

Keywords

Navigation