The Role of Sex Differences in Autophagy in the Heart During Coxsackievirus B3-Induced Myocarditis

  • Andreas Koenig
  • Adam Sateriale
  • Ralph C. Budd
  • Sally A. Huber
  • Iwona A. Buskiewicz


Under normal conditions, autophagy maintains cardiomyocyte health and integrity through turnover of organelles. During stress, oxygen and nutrient deprivation, or microbial infection, autophagy prolongs cardiomyocyte survival. Sex differences in induction of cell death may to some extent explain the disparity between the sexes in many human diseases. However, sex differences in gene expression, which regulate cell death and autophagy, were so far not taken in consideration to explain the sex bias of viral myocarditis. Coxsackievirus B3 (CVB3)-induced myocarditis is a sex-biased disease, with females being substantially less susceptible than males and sex hormones largely determine this bias. CVB3 was shown to induce and subvert the autophagosome for its optimal viral RNA replication. Gene expression analysis on mouse and human, healthy and CVB3-infected, cardiac samples of both sexes, suggests sex differences in autophagy-related gene expression. This review discusses the aspects of sex bias in autophagy induction in cardiomyocytes.


Coxsackievirus B3 (CVB3) Autophagy Sex bias Myocarditis 



We would like to thank Julie A. Dragon and Brian J. Roberts for their help with the microarray data obtained in the mouse model. This work was supported by National Institutes of Health Grants: HL108371 (SAH) and P20 GM103496-07 (RCB). The authors acknowledge the following public source for the microarray data: Genomics of Cardiovascular Development, Adaptation, and Remodeling, NHLBI Program for Genomic Applications, Harvard Medical School (url:; accessed January 2012).


  1. 1.
    Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33(2), 437–449.PubMedCrossRefGoogle Scholar
  2. 2.
    Fedorko, M. (1967). Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes—an ultrastructural study. The Journal of clinical investigation, 46(12), 1932–1942. doi: 10.1172/JCI105683.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4), 463–477.PubMedCrossRefGoogle Scholar
  4. 4.
    Pattingre, S., Espert, L., Biard-Piechaczyk, M., & Codogno, P. (2008). Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 90(2), 313–323. doi: 10.1016/j.biochi.2007.08.014.PubMedCrossRefGoogle Scholar
  5. 5.
    Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.PubMedCrossRefGoogle Scholar
  6. 6.
    Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. American Journal of Physiology - Cellular Physiology, 298(4), C776–C785. doi: 10.1152/ajpcell.00507.2009.CrossRefGoogle Scholar
  7. 7.
    Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences: CMLS, 69(7), 1125–1136. doi: 10.1007/s00018-011-0865-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Mijaljica, D., Prescott, M., & Devenish, R. J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 7(7), 673–682.PubMedCrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay, U., & Cuervo, A. M. (2008). Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy, 4(8), 1101–1103.PubMedCentralPubMedGoogle Scholar
  10. 10.
    De Meyer, G. R., & Martinet, W. (2009). Autophagy in the cardiovascular system. Biochimica et Biophysica Acta, 1793(9), 1485–1495. doi: 10.1016/j.bbamcr.2008.12.011.PubMedCrossRefGoogle Scholar
  11. 11.
    Gottlieb, R. A., Finley, K. D., & Mentzer, R. M., Jr. (2009). Cardioprotection requires taking out the trash. Basic Research in Cardiology, 104(2), 169–180. doi: 10.1007/s00395-009-0011-9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hein, S., Kostin, S., Heling, A., Maeno, Y., & Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiovascular Research, 45(2), 273–278.PubMedCrossRefGoogle Scholar
  13. 13.
    Piquereau, J., Caffin, F., Novotova, M., Lemaire, C., Veksler, V., Garnier, A., et al. (2013). Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Frontiers in Physiology, 4, 102. doi: 10.3389/fphys.2013.00102.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    An, L., Zhao, X., Wu, J., Jia, J., Zou, Y., Guo, X., et al. (2012). Involvement of autophagy in cardiac remodeling in transgenic mice with cardiac specific over-expression of human programmed cell death 5. PloS ONE, 7(1), e30097. doi: 10.1371/journal.pone.0030097.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yan, L., Vatner, D. E., Kim, S. J., Ge, H., Masurekar, M., Massover, W. H., et al. (2005). Autophagy in chronically ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13807–13812. doi: 10.1073/pnas.0506843102.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., & Suma, H. (2001). Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Japanese Circulation Journal, 65(11), 965–968.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyata, S., Takemura, G., Kawase, Y., Li, Y., Okada, H., Maruyama, R., et al. (2006). Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. The American Journal of Pathology, 168(2), 386–397. doi: 10.2353/ajpath.2006.050137.PubMedCrossRefGoogle Scholar
  18. 18.
    Dammrich, J., & Pfeifer, U. (1983). Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 43(3), 287–307.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfeifer, U., Fohr, J., Wilhelm, W., & Dammrich, J. (1987). Short-term inhibition of cardiac cellular autophagy by isoproterenol. Journal of Molecular and Cellular Cardiology, 19(12), 1179–1184.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13(5), 619–624. doi: 10.1038/nm1574.PubMedCrossRefGoogle Scholar
  21. 21.
    Levine, B. (2005). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell, 120(2), 159–162. doi: 10.1016/j.cell.2005.01.005.PubMedGoogle Scholar
  22. 22.
    Richetta, C., & Faure, M. (2013). Autophagy in antiviral innate immunity. Cellular Microbiology, 15(3), 368–376. doi: 10.1111/cmi.12043.PubMedCrossRefGoogle Scholar
  23. 23.
    Kallman, F., Williams, R. C., Dulbecco, R., & Vogt, M. (1958). Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus. The Journal of Biophysical and Biochemical Cytology, 4(3), 301–308.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chaumorcel, M., Lussignol, M., Mouna, L., Cavignac, Y., Fahie, K., Cotte-Laffitte, J., et al. (2012). The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. Journal of Virology, 86(5), 2571–2584. doi: 10.1128/JVI.05746-11.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gannage, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., Ramer, P. C., et al. (2009). Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host & Microbe, 6(4), 367–380. doi: 10.1016/j.chom.2009.09.005.CrossRefGoogle Scholar
  26. 26.
    Kyei, G. B., Dinkins, C., Davis, A. S., Roberts, E., Singh, S. B., Dong, C., et al. (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. The Journal of Cell Biology, 186(2), 255–268. doi: 10.1083/jcb.200903070.PubMedCrossRefGoogle Scholar
  27. 27.
    Orvedahl, A., Alexander, D., Talloczy, Z., Sun, Q., Wei, Y., Zhang, W., et al. (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host & Microbe, 1(1), 23–35. doi: 10.1016/j.chom.2006.12.001.CrossRefGoogle Scholar
  28. 28.
    Wong, J., Zhang, J., Si, X., Gao, G., Mao, I., McManus, B. M., et al. (2008). Autophagosome supports coxsackievirus B3 replication in host cells. Journal of Virology, 82(18), 9143–9153. doi: 10.1128/JVI.00641-08.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yoon, S. Y., Ha, Y. E., Choi, J. E., Ahn, J., Lee, H., Kweon, H. S., et al. (2008). Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. Journal of Virology, 82(23), 11976–11978. doi: 10.1128/JVI.01028-08.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Harb, J. M., & Burch, G. E. (1975). Spherical aggregates of coxsackie B4 virus particles in mouse pancreas. Beiträge zur Pathologie, 156(2), 122–127.PubMedCrossRefGoogle Scholar
  31. 31.
    Alirezaei, M., Flynn, C. T., Wood, M. R., & Whitton, J. L. (2012). Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host & Microbe, 11(3), 298–305. doi: 10.1016/j.chom.2012.01.014.CrossRefGoogle Scholar
  32. 32.
    Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K. Q., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14050–14055. doi: 10.1073/pnas.0704014104.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kemball, C. C., Alirezaei, M., & Whitton, J. L. (2010). Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future Microbiology, 5(9), 1329–1347. doi: 10.2217/fmb.10.101.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Patel, K. K., Miyoshi, H., Beatty, W. L., Head, R. D., Malvin, N. P., Cadwell, K., et al. (2013). Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. The EMBO Journal. doi: 10.1038/emboj.2013.233.Google Scholar
  35. 35.
    Munz, C. (2010). Antigen processing for MHC presentation by autophagy. F1000 Biology Reports, 2, 61. doi: 10.3410/B2-61.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., et al. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 406(6798), 902–906. doi: 10.1038/35022595.PubMedCrossRefGoogle Scholar
  37. 37.
    Kemball, C. C., Alirezaei, M., Flynn, C. T., Wood, M. R., Harkins, S., Kiosses, W. B., et al. (2010). Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. Journal of Virology, 84(23), 12110–12124. doi: 10.1128/JVI.01417-10.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gorbea, C., Makar, K. A., Pauschinger, M., Pratt, G., Bersola, J. L., Varela, J., et al. (2010). A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. The Journal of Biological Chemistry, 285(30), 23208–23223. doi: 10.1074/jbc.M109.047464.PubMedCrossRefGoogle Scholar
  39. 39.
    Negishi, H., Osawa, T., Ogami, K., Ouyang, X., Sakaguchi, S., Koshiba, R., et al. (2008). A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20446–20451. doi: 10.1073/pnas.0810372105.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gangaplara, A., Massilamany, C., Brown, D. M., Delhon, G., Pattnaik, A. K., Chapman, N., et al. (2012). Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clinical Immunology, 144(3), 237–249. doi: 10.1016/j.clim.2012.07.003.PubMedCrossRefGoogle Scholar
  41. 41.
    Ratcliffe, N. R., Hutchins, J., Barry, B., & Hickey, W. F. (2000). Chronic myocarditis induced by T cells reactive to a single cardiac myosin peptide: persistent inflammation, cardiac dilatation, myocardial scarring and continuous myocyte apoptosis. Journal of Autoimmunity, 15(3), 359–367. doi: 10.1006/jaut.2000.0432.PubMedCrossRefGoogle Scholar
  42. 42.
    Steinman, R. M., & Inaba, K. (1988). The binding of antigen presenting cells to T lymphocytes. Advances in Experimental Medicine and Biology, 237, 31–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmid, D., Pypaert, M., & Munz, C. (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity, 26(1), 79–92. doi: 10.1016/j.immuni.2006.10.018.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. The Journal of Clinical Investigation, 115(10), 2656–2664. doi: 10.1172/JCI26373.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Kostin, S., Pool, L., Elsasser, A., Hein, S., Drexler, H. C., Arnon, E., et al. (2003). Myocytes die by multiple mechanisms in failing human hearts. Circulation Research, 92(7), 715–724. doi: 10.1161/01.RES.0000067471.95890.5C.PubMedCrossRefGoogle Scholar
  46. 46.
    Porrello, E. R., & Delbridge, L. M. (2009). Cardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptors. Autophagy, 5(8), 1215–1216.PubMedCrossRefGoogle Scholar
  47. 47.
    Oberst, A., & Green, D. R. (2011). It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nature Reviews Molecular Cell Biology, 12(11), 757–763. doi: 10.1038/nrm3214.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., et al. (2011). Catalytic activity of the caspase-8–FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature, 471(7338), 363–367. doi: 10.1038/nature09852.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Lee, J. S., Li, Q., Lee, J. Y., Lee, S. H., Jeong, J. H., Lee, H. R., et al. (2009). FLIP-mediated autophagy regulation in cell death control. Nature Cell Biology, 11(11), 1355–1362. doi: 10.1038/ncb1980.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    He, M. X., & He, Y. W. (2013). A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death and Differentiation, 20(2), 188–197. doi: 10.1038/cdd.2012.148.PubMedCrossRefGoogle Scholar
  51. 51.
    Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., et al. (2011). cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Molecular Cell, 43(3), 449–463. doi: 10.1016/j.molcel.2011.06.011.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Xiao, J., Moon, M., Yan, L., Nian, M., Zhang, Y., Liu, C., et al. (2012). Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Research In Cardiology, 107(1), 239. doi: 10.1007/s00395-011-0239-z.PubMedCrossRefGoogle Scholar
  53. 53.
    Kataoka, T. (2005). The caspase-8 modulator c-FLIP. Critical Reviews in Immunology, 25(1), 31–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388(6638), 190–195. doi: 10.1038/40657.PubMedCrossRefGoogle Scholar
  55. 55.
    Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386(6624), 517–521. doi: 10.1038/386517a0.PubMedCrossRefGoogle Scholar
  56. 56.
    Dohrman, A., Russell, J. Q., Cuenin, S., Fortner, K., Tschopp, J., & Budd, R. C. (2005). Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. Journal of Immunology, 175(1), 311–318.Google Scholar
  57. 57.
    Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. The Journal of Biological Chemistry, 277(47), 45162–45171. doi: 10.1074/jbc.M206882200.PubMedCrossRefGoogle Scholar
  58. 58.
    Ritthipichai, K., Nan, Y., Bossis, I., & Zhang, Y. (2012). Viral FLICE inhibitory protein of rhesus monkey rhadinovirus inhibits apoptosis by enhancing autophagosome formation. PloS ONE, 7(6), e39438. doi: 10.1371/journal.pone.0039438.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Iyer, A. K., Azad, N., Talbot, S., Stehlik, C., Lu, B., Wang, L., et al. (2011). Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. The Journal of Immunology, 187(6), 3256–3266. doi: 10.4049/jimmunol.1002915.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Haldar, S. M., & Stamler, J. S. (2011). S-Nitrosylation at the interface of autophagy and disease. Molecular Cell, 43(1), 1–3. doi: 10.1016/j.molcel.2011.06.014.PubMedCrossRefGoogle Scholar
  61. 61.
    Buskiewicz, I. A., & Huber, S. A. (2013). MDA5: the almighty for myocardium. Circulation Heart Failure, 6(2), 153–155. doi: 10.1161/CIRCHEARTFAILURE.113.000137.PubMedCrossRefGoogle Scholar
  62. 62.
    Du, X. J., Fang, L., & Kiriazis, H. (2006). Sex dimorphism in cardiac pathophysiology: experimental findings, hormonal mechanisms, and molecular mechanisms. Pharmacology & Therapeutics, 111(2), 434–475. doi: 10.1016/j.pharmthera.2005.10.016.CrossRefGoogle Scholar
  63. 63.
    Petrea, R. E., Beiser, A. S., Seshadri, S., Kelly-Hayes, M., Kase, C. S., & Wolf, P. A. (2009). Gender differences in stroke incidence and poststroke disability in the Framingham Heart Study. Stroke; A Journal of Cerebral Circulation, 40(4), 1032–1037. doi: 10.1161/STROKEAHA.108.542894.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Tegos, T. J., Kalodiki, E., Sabetai, M. M., & Nicolaides, A. N. (2001). The genesis of atherosclerosis and risk factors: a review. Angiology, 52(2), 89–98.PubMedCrossRefGoogle Scholar
  65. 65.
    Huber, S. A. (2010). Role of estrogen in suppressing autoimmunity in coxsackievirus B3-induced myocarditis. Future Virology, 5(3), 273–286. doi: 10.2217/fvl.10.19.CrossRefGoogle Scholar
  66. 66.
    Fairweather, D., Cooper, L. T., Jr., & Blauwet, L. A. (2013). Sex and gender differences in myocarditis and dilated cardiomyopathy. Current Problems in Cardiology, 38(1), 7–46. doi: 10.1016/j.cpcardiol.2012.07.003.PubMedCrossRefGoogle Scholar
  67. 67.
    Woodruff, J. F. (1980). Viral myocarditis. A review. The American Journal of Pathology, 101(2), 425–484.PubMedGoogle Scholar
  68. 68.
    Reddy, J., Massilamany, C., Buskiewicz, I., & Huber, S. A. (2013). Autoimmunity in viral myocarditis. Current Opinion in Rheumatology, 25(4), 502–508. doi: 10.1097/BOR.0b013e3283620036.PubMedCrossRefGoogle Scholar
  69. 69.
    Roberts, B. J., Dragon, J. A., Moussawi, M., & Huber, S. A. (2012). Sex-specific signaling through Toll-like receptors 2 and 4 contributes to survival outcome of coxsackievirus B3 infection in C57Bl/6 mice. Biology of Sex Differences, 3(1), 25. doi: 10.1186/2042-6410-3-25.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Murphy, P. J., & Campbell, S. S. (2007). Sex hormones, sleep, and core body temperature in older postmenopausal women. Sleep, 30(12), 1788–1794.PubMedGoogle Scholar
  71. 71.
    Bouma, W., Noma, M., Kanemoto, S., Matsubara, M., Leshnower, B. G., Hinmon, R., et al. (2010). Sex-related resistance to myocardial ischemia–reperfusion injury is associated with high constitutive ARC expression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1510–H1517. doi: 10.1152/ajpheart.01021.2009.PubMedCrossRefGoogle Scholar
  72. 72.
    Straface, E., Vona, R., Gambardella, L., Ascione, B., Marino, M., Bulzomi, P., et al. (2009). Cell sex determines anoikis resistance in vascular smooth muscle cells. FEBS Letters, 583(21), 3448–3454. doi: 10.1016/j.febslet.2009.09.052.PubMedCrossRefGoogle Scholar
  73. 73.
    Sobolewska, A., Gajewska, M., Zarzynska, J., Gajkowska, B., & Motyl, T. (2009). IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. European Journal of Cell Biology, 88(2), 117–130. doi: 10.1016/j.ejcb.2008.09.004.PubMedCrossRefGoogle Scholar
  74. 74.
    Coto-Montes, A., Tomas-Zapico, C., Martinez-Fraga, J., Vega-Naredo, I., Sierra, V., Caballero, B., et al. (2009). Sexual autophagic differences in the androgen-dependent flank organ of Syrian hamsters. Journal of Andrology, 30(2), 113–121. doi: 10.2164/jandrol.108.005355.PubMedCrossRefGoogle Scholar
  75. 75.
    Lista, P., Straface, E., Brunelleschi, S., Franconi, F., & Malorni, W. (2011). On the role of autophagy in human diseases: a gender perspective. Journal of Cellular and Molecular Medicine, 15(7), 1443–1457. doi: 10.1111/j.1582-4934.2011.01293.x.PubMedCrossRefGoogle Scholar
  76. 76.
    Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Cardioprotection through autophagy: ready for clinical trial? Autophagy, 7(4), 434–435.PubMedCrossRefGoogle Scholar
  77. 77.
    Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Ono, K., Nagao, K., et al. (2011). Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. American Journal of Physiology Heart and Circulatory Physiology, 300(6), H2261–H2271. doi: 10.1152/ajpheart.01056.2010.PubMedCrossRefGoogle Scholar
  78. 78.
    Przyklenk, K., Undyala, V. V., Wider, J., Sala-Mercado, J. A., Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy, 7(4), 432–433.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, M., Crisostomo, P. R., Markel, T. A., Wang, Y., & Meldrum, D. R. (2008). Mechanisms of sex differences in TNFR2-mediated cardioprotection. Circulation, 118(14 Suppl), S38–S45. doi: 10.1161/CIRCULATIONAHA.107.756890.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Yoon, S., Woo, S. U., Kang, J. H., Kim, K., Kwon, M. H., Park, S., et al. (2010). STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy, 6(8), 1125–1138.PubMedCrossRefGoogle Scholar
  81. 81.
    Du, L., Hickey, R. W., Bayir, H., Watkins, S. C., Tyurin, V. A., Guo, F., et al. (2009). Starving neurons show sex difference in autophagy. The Journal of Biological Chemistry, 284(4), 2383–2396. doi: 10.1074/jbc.M804396200.PubMedCrossRefGoogle Scholar
  82. 82.
    Cosper, P. F., & Leinwand, L. A. (2011). Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Research, 71(5), 1710–1720. doi: 10.1158/0008-5472.CAN-10-3145.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Isensee, J., Witt, H., Pregla, R., Hetzer, R., Regitz-Zagrosek, V., & Noppinger, P. R. (2008). Sexually dimorphic gene expression in the heart of mice and men. Journal of Molecular Medicine (Berlin), 86(1), 61–74. doi: 10.1007/s00109-007-0240-z.CrossRefGoogle Scholar
  84. 84.
    Onyimba, J. A., Coronado, M. J., Garton, A. E., Kim, J. B., Bucek, A., Bedja, D., et al. (2011). The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biology of Sex Differences, 2, 2. doi: 10.1186/2042-6410-2-2.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Rabouille, C., Strous, G. J., Crapo, J. D., Geuze, H. J., & Slot, J. W. (1993). The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. The Journal of Cell Biology, 120(4), 897–908.PubMedCrossRefGoogle Scholar
  86. 86.
    Alvarez, B. V., Johnson, D. E., Sowah, D., Soliman, D., Light, P. E., Xia, Y., et al. (2007). Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy. The Journal of Physiology, 579(Pt 1), 127–145. doi: 10.1113/jphysiol.2006.123638.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhaorigetu, S., Yang, Z., Toma, I., McCaffrey, T. A., & Hu, C. A. (2011). Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. The Journal of Biological Chemistry, 286(31), 27389–27398. doi: 10.1074/jbc.M110.210245.PubMedCrossRefGoogle Scholar
  88. 88.
    McLaughlin, L., Zhu, G., Mistry, M., Ley-Ebert, C., Stuart, W. D., Florio, C. J., et al. (2000). Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. The Journal of Clinical Investigation, 106(9), 1105–1113. doi: 10.1172/JCI9037.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Li, Y. Y., Ishihara, S., Aziz, M. M., Oka, A., Kusunoki, R., Tada, Y., et al. (2011). Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells. International Journal of Molecular Medicine, 27(3), 337–344. doi: 10.3892/ijmm.2011.596.PubMedGoogle Scholar
  90. 90.
    Johnson, T. P., Tyagi, R., Patel, K., Schiess, N., Calabresi, P. A., & Nath, A. (2013). Impaired toll-like receptor 8 signaling in multiple sclerosis. Journal of Neuroinflammation, 10, 74. doi: 10.1186/1742-2094-10-74.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Campbell, G. R., & Spector, S. A. (2012). Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathogens, 8(11), e1003017. doi: 10.1371/journal.ppat.1003017.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Wang, J. P., Cerny, A., Asher, D. R., Kurt-Jones, E. A., Bronson, R. T., & Finberg, R. W. (2010). MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. Journal of Virology, 84(1), 254–260. doi: 10.1128/JVI.00631-09.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Barral, P. M., Sarkar, D., Fisher, P. B., & Racaniello, V. R. (2009). RIG-I is cleaved during picornavirus infection. Virology, 391(2), 171–176. doi: 10.1016/j.virol.2009.06.045.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G., & Gale, M., Jr. (2008). Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. Journal of Virology, 82(2), 609–616. doi: 10.1128/JVI.01305-07.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Loo, Y. M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., et al. (2008). Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. Journal of Virology, 82(1), 335–345. doi: 10.1128/JVI.01080-07.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Shingai, M., Ebihara, T., Begum, N. A., Kato, A., Honma, T., Matsumoto, K., et al. (2007). Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. The Journal of Immunology, 179(9), 6123–6133.PubMedGoogle Scholar
  97. 97.
    Buskiewicz, I. A., Koenig, A., Huber, S. A., & Budd, R. C. (2012). Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virology, 7(12), 1221–1236. doi: 10.2217/fvl.12.115.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Huber, S., Dohrman, A., Sartini, D., & Budd, R. C. (2006). Reduced myocarditis following Coxsackievirus infection in cellular FLICE inhibitory protein—long form-transgenic mice. Immunology, 119(4), 541–550.PubMedCrossRefGoogle Scholar
  99. 99.
    Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304(5676), 1500–1502. doi: 10.1126/science.1096645.PubMedCrossRefGoogle Scholar
  100. 100.
    Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., et al. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16677–16682. doi: 10.1073/pnas.0808597105.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andreas Koenig
    • 1
  • Adam Sateriale
    • 1
  • Ralph C. Budd
    • 1
  • Sally A. Huber
    • 2
  • Iwona A. Buskiewicz
    • 2
  1. 1.Department of Medicine, Vermont Center for Immunology and Infectious DiseasesUniversity of VermontBurlingtonUSA
  2. 2.Department of Pathology, Vermont Center for Immunology and Infectious DiseasesUniversity of VermontBurlingtonUSA

Personalised recommendations