Skip to main content

Advertisement

Log in

The Non-coding Road Towards Cardiac Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Our understanding of cardiovascular disease has evolved rapidly, leading to a number of treatments that have improved patient quality of life and mortality rates. However, there is still no cure for heart failure. This has led to the pursuit of cardiac regeneration to prevent, and ultimately cure, this debilitating condition. To this end, several approaches have been proposed, including activation of cardiomyocyte proliferation, activation of endogenous or exogenous stem/progenitor cells, delivery of de novo cardiomyocytes, and in situ direct reprogramming of cardiac fibroblasts. While these different methodologies are currently being intensely investigated, there are still a number of caveats limiting their application in the clinic. Given the emerging regulatory potential of non-coding RNAs for controlling diverse cellular processes, these molecules may offer potential solutions in this pursuit of cardiac regeneration. In this concise review, we discuss the potential role of non-coding RNAs in a variety of different cardiac regenerative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gaasch, W. H., & Zile, M. R. (2004). Left ventricular diastolic dysfunction and diastolic heart failure. Annual Review of Medicine, 55, 373–394. doi:10.1146/annurev.med.55.091902.104417.

    PubMed  CAS  Google Scholar 

  2. Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100(9), 999–1008.

    PubMed  CAS  Google Scholar 

  3. McMurray, J. J., Adamopoulos, S., Anker, S. D., Auricchio, A., Bohm, M., Dickstein, K., et al. (2012). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European heart journal, 33(14), 1787–1847. doi:10.1093/eurheartj/ehs104.

    PubMed  Google Scholar 

  4. Bristow, M. R. (2000). Beta-adrenergic receptor blockade in chronic heart failure. Circulation, 101(5), 558–569.

    PubMed  CAS  Google Scholar 

  5. C-IIa, C. (1999). The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial. Lancet, 353(9146), 9–13.

    Google Scholar 

  6. Hjalmarson, A., Goldstein, S., Fagerberg, B., Wedel, H., Waagstein, F., Kjekshus, J., et al. (2000). Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: The Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA, 283(10), 1295–1302.

    PubMed  CAS  Google Scholar 

  7. Packer, M., Fowler, M. B., Roecker, E. B., Coats, A. J., Katus, H. A., Krum, H., et al. (2002). Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation, 106(17), 2194–2199.

    PubMed  Google Scholar 

  8. Garg, R., & Yusuf, S. (1995). Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA, 273(18), 1450–1456.

    PubMed  CAS  Google Scholar 

  9. Cohn, J. N., & Tognoni, G. (2001). A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. The New England Journal of Medicine, 345(23), 1667–1675. doi:10.1056/NEJMoa010713.

    PubMed  CAS  Google Scholar 

  10. Rogers, J. H., & Bolling, S. F. (2012). What to do with functional mitral regurgitation: What do we really know and how can we find out? European Journal of Cardio-thoracic Surgery, 42(6), 915–917. doi:10.1093/ejcts/ezs472.

    PubMed  Google Scholar 

  11. Leon, M. B., Smith, C. R., Mack, M., Miller, D. C., Moses, J. W., Svensson, L. G., et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. The New England Journal of Medicine, 363(17), 1597–1607. doi:10.1056/NEJMoa1008232.

    PubMed  CAS  Google Scholar 

  12. Yun, K. L., & Miller, D. C. (1991). Mitral valve repair versus replacement. Cardiology Clinics, 9(2), 315–327.

    PubMed  CAS  Google Scholar 

  13. Doenst, T., Cleland, J. G., Rouleau, J. L., She, L., Wos, S., Ohman, E. M., et al. (2013). Influence of crossover on mortality in a randomized study of revascularization in patients with systolic heart failure and coronary artery disease. Circulation Heart Failure. doi:10.1161/circheartfailure.112.000130.

    PubMed  Google Scholar 

  14. Wijns, W., Kolh, P., Danchin, N., Di Mario, C., Falk, V., Folliguet, T., et al. (2010). Guidelines on myocardial revascularization. European Heart Journal, 31(20), 2501–2555. doi:10.1093/eurheartj/ehq277.

    PubMed  Google Scholar 

  15. Phillips, H. R., O'Connor, C. M., & Rogers, J. (2007). Revascularization for heart failure. American Heart Journal, 153(4 Suppl), 65–73. doi:10.1016/j.ahj.2007.01.026.

    PubMed  Google Scholar 

  16. Krijnen, P. A., Nijmeijer, R., Meijer, C. J., Visser, C. A., Hack, C. E., & Niessen, H. W. (2002). Apoptosis in myocardial ischaemia and infarction. Journal of Clinical Pathology, 55(11), 801–811.

    PubMed  CAS  Google Scholar 

  17. Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L. T., Park, S. Y., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1446–1451. doi:10.1073/pnas.1214608110.

    PubMed  CAS  Google Scholar 

  18. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102. doi:10.1126/science.1164680.

    PubMed  CAS  Google Scholar 

  19. van Empel, V. P., Bertrand, A. T., Hofstra, L., Crijns, H. J., Doevendans, P. A., & De Windt, L. J. (2005). Myocyte apoptosis in heart failure. Cardiovascular Research, 67(1), 21–29. doi:10.1016/j.cardiores.2005.04.012.

    PubMed  Google Scholar 

  20. MacLellan, W. R., & Schneider, M. D. (2000). Genetic dissection of cardiac growth control pathways. Annual Review of Physiology, 62, 289–319. doi:10.1146/annurev.physiol.62.1.289.

    PubMed  CAS  Google Scholar 

  21. Ahuja, P., Sdek, P., & MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87(2), 521–544. doi:10.1152/physrev.00032.2006.

    PubMed  CAS  Google Scholar 

  22. Pasumarthi, K. B., & Field, L. J. (2002). Cardiomyocyte cell cycle regulation. Circulation Research, 90(10), 1044–1054.

    PubMed  CAS  Google Scholar 

  23. van den Berg, G., Abu-Issa, R., de Boer, B. A., Hutson, M. R., de Boer, P. A., Soufan, A. T., et al. (2009). A caudal proliferating growth center contributes to both poles of the forming heart tube. Circulation Research, 104(2), 179–188. doi:10.1161/circresaha.108.185843.

    PubMed  Google Scholar 

  24. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Izpisua Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464(7288), 606–609. doi:10.1038/nature08899.

    PubMed  CAS  Google Scholar 

  25. Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464(7288), 601–605. doi:10.1038/nature08804.

    PubMed  CAS  Google Scholar 

  26. Mahmoud, A. I., & Porrello, E. R. (2012). Turning back the cardiac regenerative clock: Lessons from the neonate. Trends in Cardiovascular Medicine, 22(5), 128–133. doi:10.1016/j.tcm.2012.07.008.

    PubMed  Google Scholar 

  27. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080. doi:10.1126/science.1200708.

    PubMed  CAS  Google Scholar 

  28. Porrello, E. R., Mahmoud, A. I., Simpson, E., Johnson, B. A., Grinsfelder, D., Canseco, D., et al. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 187–192. doi:10.1073/pnas.1208863110.

    PubMed  CAS  Google Scholar 

  29. Haubner, B. J., Adamowicz-Brice, M., Khadayate, S., Tiefenthaler, V., Metzler, B., Aitman, T., et al. (2012). Complete cardiac regeneration in a mouse model of myocardial infarction. Aging, 4(12), 966–977.

    PubMed  CAS  Google Scholar 

  30. Porrello, E. R., Johnson, B. A., Aurora, A. B., Simpson, E., Nam, Y. J., Matkovich, S. J., et al. (2011). MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circulation Research, 109(6), 670–679. doi:10.1161/circresaha.111.248880.

    PubMed  CAS  Google Scholar 

  31. Mahmoud, A. I., Kocabas, F., Muralidhar, S. A., Kimura, W., Koura, A. S., Thet, S., et al. (2013). Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 497(7448), 249–253. doi:10.1038/nature12054.

    PubMed  CAS  Google Scholar 

  32. Soonpaa, M. H., & Field, L. J. (1997). Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. The American Journal of Physiology, 272(1 Pt 2), H220–H226.

    PubMed  CAS  Google Scholar 

  33. Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432), 433–436. doi:10.1038/nature11682.

    PubMed  CAS  Google Scholar 

  34. Walsh, S., Ponten, A., Fleischmann, B. K., & Jovinge, S. (2010). Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovascular Research, 86(3), 365–373. doi:10.1093/cvr/cvq005.

    PubMed  CAS  Google Scholar 

  35. Kajstura, J., Gurusamy, N., Ogorek, B., Goichberg, P., Clavo-Rondon, C., Hosoda, T., et al. (2010). Myocyte turnover in the aging human heart. Circulation Research, 107(11), 1374–1386. doi:10.1161/circresaha.110.231498.

    PubMed  CAS  Google Scholar 

  36. Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8), 970–974. doi:10.1038/nm1618.

    PubMed  CAS  Google Scholar 

  37. Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8(4), 389–398. doi:10.1016/j.stem.2011.02.002.

    PubMed  CAS  Google Scholar 

  38. Porrello, E. R., & Olson, E. N. (2010). Building a new heart from old parts: stem cell turnover in the aging heart. Circulation Research, 107(11), 1292–1294. doi:10.1161/circresaha.110.235168.

    PubMed  CAS  Google Scholar 

  39. van Amerongen, M. J., & Engel, F. B. (2008). Features of cardiomyocyte proliferation and its potential for cardiac regeneration. Journal of Cellular and Molecular Medicine, 12(6A), 2233–2244. doi:10.1111/j.1582-4934.2008.00439.x.

    PubMed  Google Scholar 

  40. Macmahon, H. E. (1937). Hyperplasia and regeneration of the myocardium in infants and in children. The American Journal of Pathology, 13(5), 845–854. 845.

    PubMed  CAS  Google Scholar 

  41. Eulalio, A., Mano, M., Dal Ferro, M., Zentilin, L., Sinagra, G., Zacchigna, S., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature, 492(7429), 376–381. doi:10.1038/nature11739.

    PubMed  CAS  Google Scholar 

  42. Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270. doi:10.1016/j.cell.2009.04.060.

    PubMed  CAS  Google Scholar 

  43. Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19(10), 1175–1187. doi:10.1101/gad.1306705.

    CAS  Google Scholar 

  44. Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474(7353), 640–644. doi:10.1038/nature10188.

    PubMed  CAS  Google Scholar 

  45. Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9(6), 527–540. doi:10.1016/j.stem.2011.10.002.

    PubMed  CAS  Google Scholar 

  46. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    PubMed  CAS  Google Scholar 

  47. Oyama, T., Nagai, T., Wada, H., Naito, A. T., Matsuura, K., Iwanaga, K., et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. The Journal of Cell Biology, 176(3), 329–341. doi:10.1083/jcb.200603014.

    PubMed  CAS  Google Scholar 

  48. Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908. doi:10.1161/circulationaha.106.655209.

    PubMed  Google Scholar 

  49. Smits, A. M., van Vliet, P., Metz, C. H., Korfage, T., Sluijter, J. P., Doevendans, P. A., et al. (2009). Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: An in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 4(2), 232–243. doi:10.1038/nprot.2008.229.

    PubMed  CAS  Google Scholar 

  50. Ellison, G. M., Nadal-Ginard, B., & Torella, D. (2012). Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment. Journal of Cardiovascular Translational Research, 5(5), 667–677. doi:10.1007/s12265-012-9384-5.

    PubMed  Google Scholar 

  51. Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: A paradigm shift in human myocardial biology. Circulation Research, 109(8), 941–961. doi:10.1161/circresaha.111.243154.

    PubMed  CAS  Google Scholar 

  52. Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85(4), 1373–1416. doi:10.1152/physrev.00013.2005.

    PubMed  CAS  Google Scholar 

  53. Gajzer, D. C., Balbin, J., & Chaudhry, H. W. (2012). Thymosin beta4 and cardiac regeneration: Are we missing a beat? Stem Cell Reviews. doi:10.1007/s12015-012-9378-3.

    Google Scholar 

  54. Ellison, G. M., Torella, D., Dellegrottaglie, S., Perez-Martinez, C., Perez de Prado, A., Vicinanza, C., et al. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology, 58(9), 977–986. doi:10.1016/j.jacc.2011.05.013.

    PubMed  CAS  Google Scholar 

  55. Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857. doi:10.1016/s0140-6736(11)61590-0.

    PubMed  Google Scholar 

  56. Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904. doi:10.1016/s0140-6736(12)60195-0.

    PubMed  Google Scholar 

  57. Welt, F. G., Gallegos, R., Connell, J., Kajstura, J., D'Amario, D., Kwong, R. Y., et al. (2013). Effect of cardiac stem cells on left-ventricular remodeling in a canine model of chronic myocardial infarction. Circulation Heart Failure, 6(1), 99–106. doi:10.1161/circheartfailure.112.972273.

    PubMed  Google Scholar 

  58. Stamm, C., Nasseri, B., & Hetzer, R. (2012). Cardiac stem cells in patients with ischaemic cardiomyopathy. Lance, 379(9819), 891. doi:10.1016/s0140-6736(12)60385-7. author reply 891–892.

    Google Scholar 

  59. Huang, C., Gu, H., Yu, Q., Manukyan, M. C., Poynter, J. A., & Wang, M. (2011). Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PloS One, 6(12), e29246. doi:10.1371/journal.pone.0029246.

    PubMed  CAS  Google Scholar 

  60. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219. doi:10.1161/circresaha.108.176826.

    PubMed  CAS  Google Scholar 

  61. Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980. doi:10.1161/circresaha.109.210682.

    PubMed  CAS  Google Scholar 

  62. Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167(10), 989–997. doi:10.1001/archinte.167.10.989.

    PubMed  Google Scholar 

  63. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913–922. doi:10.1161/circresaha.110.222703.

    PubMed  CAS  Google Scholar 

  64. Psaltis, P. J., Paton, S., See, F., Arthur, A., Martin, S., Itescu, S., et al. (2010). Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. Journal of Cellular Physiology, 223(2), 530–540. doi:10.1002/jcp.22081.

    PubMed  CAS  Google Scholar 

  65. Martens, T. P., See, F., Schuster, M. D., Sondermeijer, H. P., Hefti, M. M., Zannettino, A., et al. (2006). Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nature Clinical Practice Cardiovascular Medicine, 3(Suppl 1), S18–S22. doi:10.1038/ncpcardio0404.

    PubMed  CAS  Google Scholar 

  66. Timmers, L., Lim, S. K., Arslan, F., Armstrong, J. S., Hoefer, I. E., Doevendans, P. A., et al. (2007). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1(2), 129–137. doi:10.1016/j.scr.2008.02.002.

    PubMed  CAS  Google Scholar 

  67. Adler, E. D., Chen, V. C., Bystrup, A., Kaplan, A. D., Giovannone, S., Briley-Saebo, K., et al. (2010). The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction. FASEB Journal, 24(4), 1073–1081. doi:10.1096/fj.09-135426.

    PubMed  CAS  Google Scholar 

  68. Paulis, L. E., Klein, A. M., Ghanem, A., Geelen, T., Coolen, B. F., Breitbach, M., et al. (2013). Embryonic cardiomyocyte, but not autologous stem cell transplantation, restricts infarct expansion, enhances ventricular function, and improves long-term survival. PloS One, 8(4), e61510. doi:10.1371/journal.pone.0061510.

    PubMed  CAS  Google Scholar 

  69. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi:10.1016/j.cell.2007.11.019.

    PubMed  CAS  Google Scholar 

  70. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 108(3), 407–414. doi:10.1172/jci12131.

    PubMed  CAS  Google Scholar 

  71. Hudson, J., Titmarsh, D., Hidalgo, A., Wolvetang, E., & Cooper-White, J. (2012). Primitive cardiac cells from human embryonic stem cells. Stem Cells and Development, 21(9), 1513–1523. doi:10.1089/scd.2011.0254.

    PubMed  CAS  Google Scholar 

  72. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2), 228–240. doi:10.1016/j.stem.2010.12.008.

    PubMed  CAS  Google Scholar 

  73. Lian, X., Zhang, J., Azarin, S. M., Zhu, K., Hazeltine, L. B., Bao, X., et al. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nature Protocols, 8(1), 162–175. doi:10.1038/nprot.2012.150.

    PubMed  CAS  Google Scholar 

  74. Elliott, D. A., Braam, S. R., Koutsis, K., Ng, E. S., Jenny, R., Lagerqvist, E. L., et al. (2011). NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 8(12), 1037–1040. doi:10.1038/nmeth.1740.

    PubMed  CAS  Google Scholar 

  75. Dubois, N. C., Craft, A. M., Sharma, P., Elliott, D. A., Stanley, E. G., Elefanty, A. G., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29(11), 1011–1018. doi:10.1038/nbt.2005.

    PubMed  CAS  Google Scholar 

  76. van Laake, L. W., Passier, R., Doevendans, P. A., & Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation Research, 102(9), 1008–1010. doi:10.1161/circresaha.108.175505.

    PubMed  Google Scholar 

  77. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024. doi:10.1038/nbt1327.

    PubMed  CAS  Google Scholar 

  78. van Laake, L. W., Passier, R., den Ouden, K., Schreurs, C., Monshouwer-Kloots, J., Ward-van Oostwaard, D., et al. (2009). Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Research, 3(2–3), 106–112. doi:10.1016/j.scr.2009.05.004.

    PubMed  Google Scholar 

  79. Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J. F., et al. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230.

    PubMed  CAS  Google Scholar 

  80. Hudson, J. E., Brooke, G., Blair, C., Wolvetang, E., & Cooper-White, J. J. (2011). Development of myocardial constructs using modulus-matched acrylated polypropylene glycol triol substrate and different nonmyocyte cell populations. Tissue Engineering Part A, 17(17–18), 2279–2289. doi:10.1089/ten.TEA.2010.0743.

    PubMed  CAS  Google Scholar 

  81. Zimmermann, W. H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12(4), 452–458. doi:10.1038/nm1394.

    PubMed  CAS  Google Scholar 

  82. Brown, D. A., MacLellan, W. R., Laks, H., Dunn, J. C., Wu, B. M., & Beygui, R. E. (2007). Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnology and Bioengineering, 97(4), 962–975. doi:10.1002/bit.21295.

    PubMed  CAS  Google Scholar 

  83. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325. doi:10.1038/nature11317.

    PubMed  CAS  Google Scholar 

  84. Didie, M., Christalla, P., Rubart, M., Muppala, V., Doker, S., Unsold, B., et al. (2013). Parthenogenetic stem cells for tissue-engineered heart repair. The Journal of Clinical Investigation, 123(3), 1285–1298. doi:10.1172/jci66854.

    PubMed  CAS  Google Scholar 

  85. Stevens, K. R., Kreutziger, K. L., Dupras, S. K., Korte, F. S., Regnier, M., Muskheli, V., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16568–16573. doi:10.1073/pnas.0908381106.

    PubMed  CAS  Google Scholar 

  86. Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., et al. (2013). In vitro engineering of vascularized tissue surrogates. Scientific Reports, 3, 1316. doi:10.1038/srep01316.

    PubMed  CAS  Google Scholar 

  87. Zhang, Q., Jiang, J., Han, P., Yuan, Q., Zhang, J., Zhang, X., et al. (2011). Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Research, 21(4), 579–587. doi:10.1038/cr.2010.163.

    PubMed  CAS  Google Scholar 

  88. Lundy, S. D., Zhu, W. Z., Regnier, M., & Laflamme, M. A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells and Development. doi:10.1089/scd.2012.0490.

    PubMed  Google Scholar 

  89. Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 182(4627), 64–65.

    PubMed  CAS  Google Scholar 

  90. Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51(6), 987–1000.

    PubMed  CAS  Google Scholar 

  91. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.

    PubMed  CAS  Google Scholar 

  92. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi:10.1016/j.cell.2010.07.002.

    PubMed  CAS  Google Scholar 

  93. Nam, Y. J., Song, K., Luo, X., Daniel, E., Lambeth, K., West, K., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5588–5593. doi:10.1073/pnas.1301019110.

    PubMed  CAS  Google Scholar 

  94. Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi:10.1038/nature11139.

    PubMed  CAS  Google Scholar 

  95. Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485(7400), 593–598. doi:10.1038/nature11044.

    PubMed  CAS  Google Scholar 

  96. Porrello, E. R. (2013). microRNAs in cardiac development and regeneration. Clinical Science, 125(4), 151–166. doi:10.1042/cs20130011.

    PubMed  CAS  Google Scholar 

  97. Mattick, J. S. (2011). The central role of RNA in human development and cognition. FEBS Letters, 585(11), 1600–1616. doi:10.1016/j.febslet.2011.05.001.

    PubMed  CAS  Google Scholar 

  98. Clamp, M., Fry, B., Kamal, M., Xie, X., Cuff, J., Lin, M. F., et al. (2007). Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19428–19433. doi:10.1073/pnas.0709013104.

    PubMed  CAS  Google Scholar 

  99. Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306(5705), 2242–2246. doi:10.1126/science.1103388.

    PubMed  CAS  Google Scholar 

  100. Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., Margulies, E. H., et al. (2007). Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature, 447(7146), 799–816. doi:10.1038/nature05874.

    PubMed  CAS  Google Scholar 

  101. Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., et al. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74. doi:10.1038/nature11247.

    PubMed  CAS  Google Scholar 

  102. Doolittle, W. F. (2013). Is junk DNA bunk? A critique of ENCODE. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5294–5300. doi:10.1073/pnas.1221376110.

    PubMed  CAS  Google Scholar 

  103. Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482(7385), 339–346. doi:10.1038/nature10887.

    PubMed  CAS  Google Scholar 

  104. Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M. J., Kenzelmann-Broz, D., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), 409–419. doi:10.1016/j.cell.2010.06.040.

    PubMed  CAS  Google Scholar 

  105. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655. doi:10.1016/j.cell.2009.01.035.

    PubMed  CAS  Google Scholar 

  106. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    PubMed  CAS  Google Scholar 

  107. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. doi:10.1101/gr.082701.108.

    PubMed  CAS  Google Scholar 

  108. Thomson, D. W., Bracken, C. P., & Goodall, G. J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Research, 39(16), 6845–6853. doi:10.1093/nar/gkr330.

    PubMed  CAS  Google Scholar 

  109. Miska, E. A., Alvarez-Saavedra, E., Abbott, A. L., Lau, N. C., Hellman, A. B., McGonagle, S. M., et al. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genetics, 3(12), e215. doi:10.1371/journal.pgen.0030215.

    PubMed  Google Scholar 

  110. van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., et al. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental Cell, 17(5), 662–673. doi:10.1016/j.devcel.2009.10.013.

    PubMed  Google Scholar 

  111. van Rooij, E., & Olson, E. N. (2012). MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nature Reviews Drug Discovery, 11(11), 860–872. doi:10.1038/nrd3864.

    PubMed  Google Scholar 

  112. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789. doi:10.1101/gr.132159.111.

    PubMed  CAS  Google Scholar 

  113. Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223–227. doi:10.1038/nature07672.

    PubMed  CAS  Google Scholar 

  114. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H., & Bartel, D. P. (2011). Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147(7), 1537–1550. doi:10.1016/j.cell.2011.11.055.

    PubMed  CAS  Google Scholar 

  115. Klattenhoff, C. A., Scheuermann, J. C., Surface, L. E., Bradley, R. K., Fields, P. A., Steinhauser, M. L., et al. (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152(3), 570–583. doi:10.1016/j.cell.2013.01.003.

    PubMed  CAS  Google Scholar 

  116. Schonrock, N., Harvey, R. P., & Mattick, J. S. (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circulation Research, 111(10), 1349–1362. doi:10.1161/circresaha.112.268953.

    PubMed  CAS  Google Scholar 

  117. Brown, B. D., & Naldini, L. (2009). Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature Reviews Genetics, 10(8), 578–585. doi:10.1038/nrg2628.

    PubMed  CAS  Google Scholar 

  118. Bish, L. T., Morine, K., Sleeper, M. M., Sanmiguel, J., Wu, D., Gao, G., et al. (2008). Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Human Gene Therapy, 19(12), 1359–1368. doi:10.1089/hum.2008.123.

    PubMed  CAS  Google Scholar 

  119. Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., et al. (2006). Robust systemic transduction with AAV9 vectors in mice: Efficient global cardiac gene transfer superior to that of AAV8. Molecular Therapy, 14(1), 45–53. doi:10.1016/j.ymthe.2006.03.014.

    PubMed  CAS  Google Scholar 

  120. Wu, Z., Yang, H., & Colosi, P. (2010). Effect of genome size on AAV vector packaging. Molecular Therapy, 18(1), 80–86. doi:10.1038/mt.2009.255.

    PubMed  CAS  Google Scholar 

  121. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature, 438(7068), 685–689. doi:10.1038/nature04303.

    PubMed  Google Scholar 

  122. Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K. G., Pena, J., Tuschl, T., et al. (2007). Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 35(9), 2885–2892. doi:10.1093/nar/gkm024.

    PubMed  CAS  Google Scholar 

  123. Milligan, J. F., Matteucci, M. D., & Martin, J. C. (1993). Current concepts in antisense drug design. Journal of Medicinal Chemistry, 36(14), 1923–1937.

    PubMed  CAS  Google Scholar 

  124. Brown-Driver, V., Eto, T., Lesnik, E., Anderson, K. P., & Hanecak, R. C. (1999). Inhibition of translation of hepatitis C virus RNA by 2-modified antisense oligonucleotides. Antisense & Nucleic Acid Drug Development, 9(2), 145–154.

    CAS  Google Scholar 

  125. Fabani, M. M., & Gait, M. J. (2008). miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 14(2), 336–346. doi:10.1261/rna.844108.

    PubMed  CAS  Google Scholar 

  126. Davis, S., Lollo, B., Freier, S., & Esau, C. (2006). Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Research, 34(8), 2294–2304. doi:10.1093/nar/gkl183.

    PubMed  CAS  Google Scholar 

  127. Kauppinen, S., Vester, B., & Wengel, J. (2006). Locked nucleic acid: High-affinity targeting of complementary RNA for RNomics. Handbook of Experimental Pharmacology, 173, 405–422.

    PubMed  CAS  Google Scholar 

  128. Montgomery, R. L., Hullinger, T. G., Semus, H. M., Dickinson, B. A., Seto, A. G., Lynch, J. M., et al. (2011). Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 124(14), 1537–1547. doi:10.1161/circulationaha.111.030932.

    PubMed  CAS  Google Scholar 

  129. Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582. doi:10.1093/cvr/cvr344.

    PubMed  CAS  Google Scholar 

  130. Rapicavoli, N. A., Poth, E. M., & Blackshaw, S. (2010). The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Developmental Biology, 10, 49. doi:10.1186/1471-213x-10-49.

    PubMed  Google Scholar 

  131. Zhang, B., Arun, G., Mao, Y. S., Lazar, Z., Hung, G., Bhattacharjee, G., et al. (2012). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports, 2(1), 111–123. doi:10.1016/j.celrep.2012.06.003.

    PubMed  CAS  Google Scholar 

  132. Sen, G. L., & Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biology, 7(6), 633–636. doi:10.1038/ncb1265.

    PubMed  CAS  Google Scholar 

  133. Wheeler, T. M., Leger, A. J., Pandey, S. K., MacLeod, A. R., Nakamori, M., Cheng, S. H., et al. (2012). Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature, 488(7409), 111–115. doi:10.1038/nature11362.

    PubMed  CAS  Google Scholar 

  134. Todd, P. K., & Paulson, H. L. (2012). Drug discovery: Kill the messenger where it lives. Nature, 488(7409), 36–38. doi:10.1038/488036a.

    PubMed  CAS  Google Scholar 

  135. Chen, J., Huang, Z. P., Seok, H., Ding, J., Kataoka, M., Zhang, Z., et al. (2013). mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circulation Research, 10.1161/circresaha.112.300658.

  136. Chen, Y., Zhu, X., Zhang, X., Liu, B., & Huang, L. (2010). Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Molecular Therapy, 18(9), 1650–1656. doi:10.1038/mt.2010.136.

    PubMed  CAS  Google Scholar 

  137. Babar, I. A., Cheng, C. J., Booth, C. J., Liang, X., Weidhaas, J. B., Saltzman, W. M., et al. (2012). Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 109(26), E1695–E1704. doi:10.1073/pnas.1201516109.

    PubMed  CAS  Google Scholar 

  138. Wang, J., Greene, S. B., Bonilla-Claudio, M., Tao, Y., Zhang, J., Bai, Y., et al. (2010). Bmp signaling regulates myocardial differentiation from cardiac progenitors through a microRNA-mediated mechanism. Developmental Cell, 19(6), 903–912. doi:10.1016/j.devcel.2010.10.022.

    PubMed  CAS  Google Scholar 

  139. Hu, S., Huang, M., Nguyen, P. K., Gong, Y., Li, Z., Jia, F., et al. (2011). Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation, 124(11 Suppl), S27–S34. doi:10.1161/circulationaha.111.017954.

    PubMed  Google Scholar 

  140. Sirish, P., Lopez, J. E., Li, N., Wong, A., Timofeyev, V., Young, J. N., et al. (2012). MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. Journal of Molecular and Cellular Cardiology, 52(1), 264–272. doi:10.1016/j.yjmcc.2011.10.012.

    PubMed  CAS  Google Scholar 

  141. Sluijter, J. P., van Mil, A., van Vliet, P., Metz, C. H., Liu, J., Doevendans, P. A., et al. (2010). MicroRNA-1 and −499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(4), 859–868. doi:10.1161/atvbaha.109.197434.

    PubMed  CAS  Google Scholar 

  142. Cunningham, J. J., Ulbright, T. M., Pera, M. F., & Looijenga, L. H. (2012). Lessons from human teratomas to guide development of safe stem cell therapies. Nature Biotechnology, 30(9), 849–857. doi:10.1038/nbt.2329.

    PubMed  CAS  Google Scholar 

  143. Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229. doi:10.1016/j.stem.2008.01.016.

    PubMed  CAS  Google Scholar 

  144. Fu, J. D., Rushing, S. N., Lieu, D. K., Chan, C. W., Kong, C. W., Geng, L., et al. (2011). Distinct roles of microRNA-1 and −499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PloS One, 6(11), e27417. doi:10.1371/journal.pone.0027417.

    PubMed  CAS  Google Scholar 

  145. Liu, J., Fu, J. D., Siu, C. W., & Li, R. A. (2007). Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: Insights for driven maturation. Stem Cells, 25(12), 3038–3044. doi:10.1634/stemcells.2007-0549.

    PubMed  CAS  Google Scholar 

  146. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93(1), 32–39. doi:10.1161/01.res.0000080317.92718.99.

    PubMed  CAS  Google Scholar 

  147. Satin, J., Kehat, I., Caspi, O., Huber, I., Arbel, G., Itzhaki, I., et al. (2004). Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. The Journal of Physiology, 559(Pt 2), 479–496. doi:10.1113/jphysiol.2004.068213.

    PubMed  CAS  Google Scholar 

  148. Boon, R. A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495(7439), 107–110. doi:10.1038/nature11919.

    PubMed  CAS  Google Scholar 

  149. Zhu, H., Yang, Y., Wang, Y., Li, J., Schiller, P. W., & Peng, T. (2011). MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovascular Research, 92(1), 75–84. doi:10.1093/cvr/cvr145.

    PubMed  CAS  Google Scholar 

  150. Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., et al. (2012). A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. The Journal of Biological Chemistry, 287(16), 12913–12926. doi:10.1074/jbc.M111.331751.

    PubMed  CAS  Google Scholar 

  151. Qian, L., Van Laake, L. W., Huang, Y., Liu, S., Wendland, M. F., & Srivastava, D. (2011). miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. The Journal of Experimental Medicine, 208(3), 549–560. doi:10.1084/jem.20101547.

    PubMed  CAS  Google Scholar 

  152. Fiedler, J., Jazbutyte, V., Kirchmaier, B. C., Gupta, S. K., Lorenzen, J., Hartmann, D., et al. (2011). MicroRNA-24 regulates vascularity after myocardial infarction. Circulation, 124(6), 720–730. doi:10.1161/circulationaha.111.039008.

    PubMed  CAS  Google Scholar 

  153. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713. doi:10.1126/science.1174381.

    PubMed  CAS  Google Scholar 

  154. Zhou, Q., Gallagher, R., Ufret-Vincenty, R., Li, X., Olson, E. N., & Wang, S. (2011). Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 27 24 clusters. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8287–8292. doi:10.1073/pnas.1105254108.

    PubMed  CAS  Google Scholar 

  155. Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., et al. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nature Immunology, 12(9), 861–869. doi:10.1038/ni.2073.

    PubMed  CAS  Google Scholar 

  156. Wei, L., Wang, M., Qu, X., Mah, A., Xiong, X., Harris, A. G., et al. (2012). Differential expression of microRNAs during allograft rejection. American Journal of Transplantation, 12(5), 1113–1123. doi:10.1111/j.1600-6143.2011.03958.x.

    PubMed  CAS  Google Scholar 

  157. Chen, J. X., Krane, M., Deutsch, M. A., Wang, L., Rav-Acha, M., Gregoire, S., et al. (2012). Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circulation Research, 111(1), 50–55. doi:10.1161/circresaha.112.270264.

    PubMed  CAS  Google Scholar 

  158. Protze, S., Khattak, S., Poulet, C., Lindemann, D., Tanaka, E. M., & Ravens, U. (2012). A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of Molecular and Cellular Cardiology, 53(3), 323–332. doi:10.1016/j.yjmcc.2012.04.010.

    PubMed  CAS  Google Scholar 

  159. Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110(11), 1465–1473. doi:10.1161/circresaha.112.269035.

    PubMed  CAS  Google Scholar 

  160. Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73. doi:10.1038/nature09798.

    PubMed  CAS  Google Scholar 

  161. Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., Tian, S., Probasco, M. D., Bailey, D. J., et al. (2011). Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods, 8(10), 821–827. doi:10.1038/nmeth.1699.

    PubMed  CAS  Google Scholar 

  162. Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388. doi:10.1016/j.stem.2011.03.001.

    PubMed  CAS  Google Scholar 

  163. Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51(12), 1087–1099. doi:10.1007/s10038-006-0070-9.

    PubMed  CAS  Google Scholar 

  164. Congrains, A., Kamide, K., Oguro, R., Yasuda, O., Miyata, K., Yamamoto, E., et al. (2012). Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 220(2), 449–455. doi:10.1016/j.atherosclerosis.2011.11.017.

    PubMed  CAS  Google Scholar 

  165. Zhuang, J., Peng, W., Li, H., Wang, W., Wei, Y., Li, W., et al. (2012). Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PloS One, 7(10), e47193. doi:10.1371/journal.pone.0047193.

    PubMed  CAS  Google Scholar 

  166. Grote, P., Wittler, L., Hendrix, D., Koch, F., Wahrisch, S., Beisaw, A., et al. (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell, 24(2), 206–214. doi:10.1016/j.devcel.2012.12.012.

    PubMed  CAS  Google Scholar 

  167. Hullinger, T. G., Montgomery, R. L., Seto, A. G., Dickinson, B. A., Semus, H. M., Lynch, J. M., et al. (2012). Inhibition of miR-15 protects against cardiac ischemic injury. Circulation Research, 110(1), 71–81. doi:10.1161/circresaha.111.244442.

    PubMed  CAS  Google Scholar 

  168. Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., et al. (2013). MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112(2), 335–346. doi:10.1161/circresaha.111.300418.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.E.H. is supported by a National Health and Medical Research Council (NHMRC) Early Career Researcher Fellowship (APP1053089). E.R.P. is supported by the NHMRC and National Heart Foundation of Australia (APP1033815 and 635530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo R. Porrello.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, J.E., Porrello, E.R. The Non-coding Road Towards Cardiac Regeneration. J. of Cardiovasc. Trans. Res. 6, 909–923 (2013). https://doi.org/10.1007/s12265-013-9486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9486-8

Keywords

Navigation