Skip to main content
Log in

Electromechanical Relationship in Hypertrophic Cardiomyopathy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

We examined whether there is a relationship between repolarization abnormalities on electrocardiography (EKG) and deformation abnormalities by echocardiography. Analysis of baseline EKGs and mechanical (echo-based deformation) changes was performed in 128 patients with a clinical diagnosis of hypertrophic cardiomyopathy (HCM). Patients with left ventricular hypertrophy (LVH) or repolarization abnormalities had higher septal thickness when compared to patients with normal EKG. Patients with EKG evidence of LVH or QTc prolongation had lower systolic velocity, systolic strain, systolic strain rate, late diastolic velocity, and late diastolic strain rate than patients with a normal EKG. Patients with strain pattern or ST depression/T-wave inversion had lower systolic velocity, systolic strain, systolic strain rate, early diastolic velocity, and late diastolic velocity when compared to patients with normal EKGs. LVH and repolarization abnormalities on surface EKG are markers of impaired systolic and diastolic mechanics in HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maron, B. J. (2002). Hypertrophic cardiomyopathy: a systematic review. Journal of the American Medical Association, 287(10), 1308–1320.

    Article  PubMed  Google Scholar 

  2. Serri, K., Reant, P., Lafitte, M., Berhouet, M., Le Bouffos, V., Roudaut, R., & Lafitte, S. (2006). Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 47(6), 1175–1181. doi:10.1016/j.jacc.2005.10.061.

    Article  PubMed  Google Scholar 

  3. Yang, H., Sun, J. P., Lever, H. M., Popovic, Z. B., Drinko, J. K., Greenberg, N. L., Shiota, T., Thomas, J. D., & Garcia, M. J. (2003). Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 16(3), 233–239. doi:10.1067/mje.2003.60S0894731702745367.

    Article  PubMed  Google Scholar 

  4. Sengupta, P. P., Mehta, V., Arora, R., Mohan, J. C., & Khandheria, B. K. (2005). Quantification of regional nonuniformity and paradoxical intramural mechanics in hypertrophic cardiomyopathy by high frame rate ultrasound myocardial strain mapping. Journal of the American Society of Echocardiography, 18(7), 737–742. doi:10.1016/j.echo.2005.03.008.

    Article  PubMed  Google Scholar 

  5. Ganame, J., Mertens, L., Eidem, B. W., Claus, P., D'Hooge, J., Havemann, L. M., McMahon, C. J., Elayda, M. A., Vaughn, W. K., Towbin, J. A., Ayres, N. A., & Pignatelli, R. H. (2007). Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. European Heart Journal, 28(23), 2886–2894. doi:10.1093/eurheartj/ehm444.

    Article  PubMed  Google Scholar 

  6. Nass, R. D., Aiba, T., Tomaselli, G. F., & Akar, F. G. (2008). Mechanisms of disease: ion channel remodeling in the failing ventricle. Nature Clinical Practice. Cardiovascular Medicine, 5(4), 196–207. doi:10.1038/ncpcardio1130.

    Article  PubMed  CAS  Google Scholar 

  7. Franz, M. R., Bargheer, K., Rafflenbeul, W., Haverich, A., & Lichtlen, P. R. (1987). Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation, 75(2), 379–386.

    Article  PubMed  CAS  Google Scholar 

  8. Shah, M., Akar, F. G., & Tomaselli, G. F. (2005). Molecular basis of arrhythmias. Circulation, 112(16), 2517–2529. doi:10.1161/CIRCULATIONAHA.104.494476.

    Article  PubMed  Google Scholar 

  9. Eriksson, M. J., Sonnenberg, B., Woo, A., Rakowski, P., Parker, T. G., Wigle, E. D., & Rakowski, H. (2002). Long-term outcome in patients with apical hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 39(4), 638–645.

    Article  PubMed  Google Scholar 

  10. Sokolow, M., & Lyon, T. P. (1949). The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. American Heart Journal, 37(2), 161–186.

    Article  PubMed  CAS  Google Scholar 

  11. Molloy, T. J., Okin, P. M., Devereux, R. B., & Kligfield, P. (1992). Electrocardiographic detection of left ventricular hypertrophy by the simple QRS voltage-duration product. Journal of the American College of Cardiology, 20(5), 1180–1186.

    Article  PubMed  CAS  Google Scholar 

  12. Straus, S. M., Kors, J. A., De Bruin, M. L., van der Hooft, C. S., Hofman, A., Heeringa, J., Deckers, J. W., Kingma, J. H., Sturkenboom, M. C., Stricker, B. H., & Witteman, J. C. (2006). Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. Journal of the American College of Cardiology, 47(2), 362–367. doi:10.1016/j.jacc.2005.08.067.

    Article  PubMed  Google Scholar 

  13. Roman, M. J., Kligfield, P., Devereux, R. B., Niles, N. W., Hochreiter, C., Halle, A., Sato, N., & Borer, J. S. (1987). Geometric and functional correlates of electrocardiographic repolarization and voltage abnormalities in aortic regurgitation. Journal of the American College of Cardiology, 9(3), 500–508.

    Article  PubMed  CAS  Google Scholar 

  14. Sakamoto, T., Tei, C., Murayama, M., Ichiyasu, H., & Hada, Y. (1976). Giant T wave inversion as a manifestation of asymmetrical apical hypertrophy (AAH) of the left ventricle. Echocardiographic and ultrasono-cardiotomographic study. Japan Heart Journal, 17(5), 611–629.

    Article  CAS  Google Scholar 

  15. Yamaguchi, H., Nishiyama, S., Nakanishi, S., & Nishimura, S. (1983). Electrocardiographic, echocardiographic and ventriculographic characterization of hypertrophic non-obstructive cardiomyopathy. European Heart Journal, 4, 105–119. Suppl F.

    Article  PubMed  Google Scholar 

  16. Fleming, A. D., McDicken, W. N., Sutherland, G. R., & Hoskins, P. R. (1994). Assessment of colour Doppler tissue imaging using test-phantoms. Ultrasound in Medicine and Biology, 20(9), 937–951.

    Article  PubMed  CAS  Google Scholar 

  17. Miyatake, K., Yamagishi, M., Tanaka, N., Uematsu, M., Yamazaki, N., Mine, Y., Sano, A., & Hirama, M. (1995). New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. Journal of the American College of Cardiology, 25(3), 717–724. doi:10.1016/0735-1097(94)00421-L.

    Article  PubMed  CAS  Google Scholar 

  18. Urheim, S., Edvardsen, T., Torp, H., Angelsen, B., & Smiseth, O. A. (2000). Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation, 102(10), 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  19. Abraham, T. P., Laskowski, C., Zhan, W. Z., Belohlavek, M., Martin, E. A., Greenleaf, J. F., & Sieck, G. C. (2003). Myocardial contractility by strain echocardiography: comparison with physiological measurements in an in vitro model. American Journal of Physiology—Heart and Circulatory Physiology, 285(6), H2599–2604. doi:10.1152/ajpheart.00994.200200994.2002.

    PubMed  CAS  Google Scholar 

  20. Gulati VK, Katz WE, Follansbee WP, Gorcsan J 3rd (1996) Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. American Journal of Cardiology, 77(11), 979–984

    Google Scholar 

  21. Gorcsan, J., 3rd, Strum, D. P., Mandarino, W. A., Gulati, V. K., & Pinsky, M. R. (1997). Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography. Comparison with sonomicrometry and pressure-volume relations. Circulation, 95(10), 2423–2433.

    Article  PubMed  Google Scholar 

  22. Greenberg, N. L., Firstenberg, M. S., Castro, P. L., Main, M., Travaglini, A., Odabashian, J. A., Drinko, J. K., Rodriguez, L. L., Thomas, J. D., & Garcia, M. J. (2002). Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation, 105(1), 99–105.

    Article  PubMed  Google Scholar 

  23. Voigt, J. U., Arnold, M. F., Karlsson, M., Hubbert, L., Kukulski, T., Hatle, L., & Sutherland, G. R. (2000). Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infarcted myocardium. Journal of the American Society of Echocardiography, 13(6), 588–598.

    Article  PubMed  CAS  Google Scholar 

  24. Nagueh, S. F., Middleton, K. J., Kopelen, H. A., Zoghbi, W. A., & Quinones, M. A. (1997). Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. Journal of the American College of Cardiology, 30(6), 1527–1533.

    Article  PubMed  CAS  Google Scholar 

  25. Sohn, D. W., Chai, I. H., Lee, D. J., Kim, H. C., Kim, H. S., Oh, B. H., Lee, M. M., Park, Y. B., Choi, Y. S., Seo, J. D., & Lee, Y. W. (1997). Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. Journal of the American College of Cardiology, 30(2), 474–480.

    Article  PubMed  CAS  Google Scholar 

  26. Nagueh, S. F., Sun, H., Kopelen, H. A., Middleton, K. J., & Khoury, D. S. (2001). Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. Journal of the American College of Cardiology, 37(1), 278–285.

    Article  PubMed  CAS  Google Scholar 

  27. Takemoto, Y., Pellikka, P. A., Wang, J., Modesto, K. M., Cauduro, S., Belohlavek, M., Seward, J. B., Thomson, H. L., Khandheria, B., & Abraham, T. P. (2005). Analysis of the interaction between segmental relaxation patterns and global diastolic function by strain echocardiography. Journal of the American Society of Echocardiography, 18(9), 901–906. doi:10.1016/j.echo.2005.05.008.

    Article  PubMed  Google Scholar 

  28. Okada, K., Mikami, T., Kaga, S., Onozuka, H., Inoue, M., Yokoyama, S., Nishino, H., Nishida, M., Matsuno, K., Iwano, H., Yamada, S., & Tsutsui, H. (2011). Early diastolic mitral annular velocity at the interventricular septal annulus correctly reflects left ventricular longitudinal myocardial relaxation. European Journal of Echocardiography, 12(12), 917–923. doi:10.1093/ejechocard/jer154.

    Article  PubMed  Google Scholar 

  29. Pislaru, C., Bruce, C. J., Anagnostopoulos, P. C., Allen, J. L., Seward, J. B., Pellikka, P. A., Ritman, E. L., & Greenleaf, J. F. (2004). Ultrasound strain imaging of altered myocardial stiffness: stunned versus infarcted reperfused myocardium. Circulation, 109(23), 2905–2910. doi:10.1161/01.CIR.0000129311.73402.EF01.CIR.0000129311.73402.EF.

    Article  PubMed  Google Scholar 

  30. Lang, R. M., Bierig, M., Devereux, R. B., Flachskampf, F. A., Foster, E., Pellikka, P. A., Picard, M. H., Roman, M. J., Seward, J., Shanewise, J. S., Solomon, S. D., Spencer, K. T., Sutton, M. S., & Stewart, W. J. (2005). Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography, 18(12), 1440–1463. doi:10.1016/j.echo.2005.10.005.

    Article  PubMed  Google Scholar 

  31. Bacharova L, Michalak K, Kyselovic J, Klimas J (2005) Relation between QRS amplitude and left ventricular mass in the initial stage of exercise-induced left ventricular hypertrophy in rats. Clinical and Experimental Hypertension, 27(6), 533–541. doi:10.1081/CEH-200068802

    Google Scholar 

  32. McLeod, C. J., Ackerman, M. J., Nishimura, R. A., Tajik, A. J., Gersh, B. J., & Ommen, S. R. (2009). Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. Journal of the American College of Cardiology, 54(3), 229–233. doi:10.1016/j.jacc.2009.02.071.

    Article  PubMed  Google Scholar 

  33. Kohsaka, S., Sciacca, R. R., Sugioka, K., Sacco, R. L., Homma, S., & Di Tullio, M. R. (2005). Additional impact of electrocardiographic over echocardiographic diagnosis of left ventricular hypertrophy for predicting the risk of ischemic stroke. American Heart Journal, 149(1), 181–186. doi:10.1016/j.ahj.2004.06.006.

    Article  PubMed  Google Scholar 

  34. Ostman-Smith I, Wisten A, Nylander E, Bratt EL, Granelli AW, Oulhaj A, Ljungstrom E (2010) Electrocardiographic amplitudes: a new risk factor for sudden death in hypertrophic cardiomyopathy. European Heart Journal, 31(4), 439–449

    Google Scholar 

  35. Hsieh, B. P., Pham, M. X., & Froelicher, V. F. (2005). Prognostic value of electrocardiographic criteria for left ventricular hypertrophy. American Heart Journal, 150(1), 161–167.

    Article  PubMed  Google Scholar 

  36. Antzelevitch C (2007) Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace, 9(Suppl 4), iv4–15. doi:10.1093/europace/eum166

    Google Scholar 

  37. Rajappan, K., O'Connell, C., & Sheridan, D. J. (2003). Changes in QT interval with exercise in elite male rowers and controls. International Journal of Cardiology, 87(2–3), 217–222.

    Article  PubMed  Google Scholar 

  38. Yang, K. C., Foeger, N. C., Marionneau, C., Jay, P. Y., McMullen, J. R., & Nerbonne, J. M. (2010). Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. The Journal of Physiology, 588(Pt 24), 5015–5032. doi:10.1113/jphysiol.2010.197418.

    Article  PubMed  CAS  Google Scholar 

  39. Antzelevitch, C. (2005). Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm, 2(2 Suppl), S9–15. doi:10.1016/j.hrthm.2004.09.011.

    Article  PubMed  Google Scholar 

  40. Yan, G. X., Lankipalli, R. S., Burke, J. F., Musco, S., & Kowey, P. R. (2003). Ventricular repolarization components on the electrocardiogram: cellular basis and clinical significance. Journal of the American College of Cardiology, 42(3), 401–409.

    Article  PubMed  Google Scholar 

  41. Klues, H. G., Schiffers, A., & Maron, B. J. (1995). Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. Journal of the American College of Cardiology, 26(7), 1699–1708. doi:10.1016/0735-1097(95)00390-8.

    Article  PubMed  CAS  Google Scholar 

  42. Petersen, S. E., Jerosch-Herold, M., Hudsmith, L. E., Robson, M. D., Francis, J. M., Doll, H. A., Selvanayagam, J. B., Neubauer, S., & Watkins, H. (2007). Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation, 115(18), 2418–2425. doi:10.1161/CIRCULATIONAHA.106.657023.

    Article  PubMed  Google Scholar 

  43. Schumacher, B., Gietzen, F. H., Neuser, H., Schummelfeder, J., Schneider, M., Kerber, S., Schimpf, R., Wolpert, C., & Borggrefe, M. (2005). Electrophysiological characteristics of septal hypertrophy in patients with hypertrophic obstructive cardiomyopathy and moderate to severe symptoms. Circulation, 112(14), 2096–2101. doi:10.1161/CIRCULATIONAHA.104.515643.

    Article  PubMed  Google Scholar 

  44. Ripplinger, C. M., Li, W., Hadley, J., Chen, J., Rothenberg, F., Lombardi, R., Wickline, S. A., Marian, A. J., & Efimov, I. R. (2007). Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation Research, 101(10), 1049–1057. doi:10.1161/CIRCRESAHA.107.161240.

    Article  PubMed  CAS  Google Scholar 

  45. Marian, A. J. (2008). Genetic determinants of cardiac hypertrophy. Current Opinion in Cardiology, 23(3), 199–205. doi:10.1097/HCO.0b013e3282fc27d900001573-200805000-00006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by National Institutes of Health grant # HL 098046. Dr. Lin was partially supported by the China Scholarship Council. The experiments comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roselle Abraham.

Additional information

Associate Editor: Jozef Bartunek oversaw the review of this article

Xiaoping Lin and Hsin-Yueh Liang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Liang, HY., Pinheiro, A. et al. Electromechanical Relationship in Hypertrophic Cardiomyopathy. J. of Cardiovasc. Trans. Res. 6, 604–615 (2013). https://doi.org/10.1007/s12265-013-9481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9481-0

Keywords

Navigation