Skip to main content

Advertisement

Log in

Percutaneous Approaches for Efficient Cardiac Gene Delivery

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Gene therapy for heart failure treatment is currently being optimized and validated. The results to date are encouraging but challenges remain before it becomes a therapeutic approach in clinical cardiology. Much effort is dedicated to improve gene transduction efficiency by improving the vectors and the delivery methods. Successful translation from the benchtop to the bedside requires teams including biologists focusing on vector modification and cardiologists refining delivery methods. Two key components for translation to the clinic include safety and efficacy. Transduction efficiency is closely linked to invasiveness in most delivery methods. However, current candidates for cardiac gene therapy are patients without effective treatment option and are in advanced heart failure, thus a less invasive approach is preferred. This review focuses on injection methods of gene delivery with emphasis on percutaneous and endovascular approaches to summarize currently available percutaneous gene delivery methods and their features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A, 102, 11474–11479.

    Article  PubMed  CAS  Google Scholar 

  2. Asokan, A. (2010). Reengineered AAV vectors: old dog, new tricks. Discov Med, 9, 399–403.

    PubMed  Google Scholar 

  3. Asokan, A., Conway, J. C., Phillips, J. L., Li, C., Hegge, J., Sinnott, R., et al. (2010). Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol, 28, 79–82.

    Article  PubMed  CAS  Google Scholar 

  4. Baklanov, D. V., de Muinck, E. D., Simons, M., Moodie, K. L., Arbuckle, B. E., Thompson, C. A., et al. (2005). Live 3D echo guidance of catheter-based endomyocardial injection. Catheter Cardiovasc Interv, 65, 340–345.

    Article  PubMed  Google Scholar 

  5. Bish, L. T., Sleeper, M. M., Brainard, B., Cole, S., Russell, N., Withnall, E., et al. (2008). Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther, 16, 1953–1959.

    Article  PubMed  CAS  Google Scholar 

  6. Boekstegers, P., & Kupatt, C. (2004). Current concepts and applications of coronary venous retroinfusion. Basic Res Cardiol, 99, 373–381.

    Article  PubMed  Google Scholar 

  7. Boekstegers, P., von Degenfeld, G., Giehrl, W., Heinrich, D., Hullin, R., Kupatt, C., et al. (2000). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther, 7, 232–240.

    Article  PubMed  CAS  Google Scholar 

  8. Bridges, C. R. (2009). 'Recirculating cardiac delivery' method of gene delivery should be called 'non-recirculating' method. Gene Ther, 16, 939–940.

    Article  PubMed  CAS  Google Scholar 

  9. Bridges, C. R., Burkman, J. M., Malekan, R., Konig, S. M., Chen, H., Yarnall, C. B., et al. (2002). Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Ann Thorac Surg, 73, 1939–1946.

    Article  PubMed  Google Scholar 

  10. Bridges, C. R., Gopal, K., Holt, D. E., Yarnall, C., Cole, S., Anderson, R. B., et al. (2005). Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg, 130, 1364.

    Article  PubMed  Google Scholar 

  11. Brito, L. A., Chandrasekhar, S., Little, S. R., & Amiji, M. M. (2010). Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed Eng Online, 9, 56.

    Article  PubMed  Google Scholar 

  12. Byrne, M. J., Power, J. M., Preovolos, A., Mariani, J. A., Hajjar, R. J., & Kaye, D. M. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther, 15, 1550–1557.

    Article  PubMed  CAS  Google Scholar 

  13. Dangas, G. D., Claessen, B. E., Caixeta, A., Sanidas, E. A., Mintz, G. S., & Mehran, R. (2010). In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol, 56, 1897–1907.

    Article  PubMed  Google Scholar 

  14. de la Fuente, L. M., Stertzer, S. H., Argentieri, J., Penaloza, E., Miano, J., Koziner, B., et al. (2007). Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am Heart J, 154(79), e71–e77.

    Google Scholar 

  15. Di Pasquale, E., Latronico, M. V., Jotti, G. S., & Condorelli, G. (2012). Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther, 19, 642–648.

    Article  PubMed  Google Scholar 

  16. Donahue, J. K., Kikkawa, K., Johns, D. C., Marban, E., & Lawrence, J. H. (1997). Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci U S A, 94, 4664–4668.

    Article  PubMed  CAS  Google Scholar 

  17. Emani, S. M., Shah, A. S., Bowman, M. K., Emani, S., Wilson, K., Glower, D. D., et al. (2003). Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther, 8, 306–313.

    Article  PubMed  CAS  Google Scholar 

  18. Flugelman, M. Y., Jaklitsch, M. T., Newman, K. D., Casscells, W., Bratthauer, G. L., & Dichek, D. A. (1992). Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation, 85, 1110–1117.

    Article  PubMed  CAS  Google Scholar 

  19. Fortuin, F. D., Vale, P., Losordo, D. W., Symes, J., DeLaria, G. A., Tyner, J. J., et al. (2003). One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol, 92, 436–439.

    Article  PubMed  CAS  Google Scholar 

  20. French, B. A., Mazur, W., Geske, R. S., & Bolli, R. (1994). Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation, 90, 2414–2424.

    Article  PubMed  CAS  Google Scholar 

  21. Fromes, Y., Salmon, A., Wang, X., Collin, H., Rouche, A., Hagege, A., et al. (1999). Gene delivery to the myocardium by intrapericardial injection. Gene Ther, 6, 683–688.

    Article  PubMed  CAS  Google Scholar 

  22. Fuchs, S., Dib, N., Cohen, B. M., Okubagzi, P., Diethrich, E. B., Campbell, A., et al. (2006). A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv, 68, 372–378.

    Article  PubMed  Google Scholar 

  23. Goldman, B., Blanke, H., & Wolinsky, H. (1987). Influence of pressure on permeability of normal and diseased muscular arteries to horseradish peroxidase. A new catheter approach. Atherosclerosis, 65, 215–225.

    Article  CAS  Google Scholar 

  24. Grines, C. L., Watkins, M. W., Helmer, G., Penny, W., Brinker, J., Marmur, J. D., et al. (2002). Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation, 105, 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  25. Grines, C. L., Watkins, M. W., Mahmarian, J. J., Iskandrian, A. E., Rade, J. J., Marrott, P., et al. (2003). A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol, 42, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  26. Grossman, P. M., Han, Z., Palasis, M., Barry, J. J., & Lederman, R. J. (2002). Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv, 55, 392–397.

    Article  PubMed  Google Scholar 

  27. Gyongyosi, M., Khorsand, A., Zamini, S., Sperker, W., Strehblow, C., Kastrup, J., et al. (2005). NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation, 112, I157–I165.

    Article  PubMed  Google Scholar 

  28. Hajjar, R. J., Schmidt, U., Matsui, T., Guerrero, J. L., Lee, K. H., Gwathmey, J. K., et al. (1998). Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci U S A, 95, 5251–5256.

    Article  PubMed  CAS  Google Scholar 

  29. Hayase, M., Del Monte, F., Kawase, Y., Macneill, B. D., McGregor, J., Yoneyama, R., et al. (2005). Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol, 288, H2995–H3000.

    Article  PubMed  CAS  Google Scholar 

  30. Hedman, M., Hartikainen, J., Syvanne, M., Stjernvall, J., Hedman, A., Kivela, A., et al. (2003). Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation, 107, 2677–2683.

    Article  PubMed  CAS  Google Scholar 

  31. Hedman, M., Hartikainen, J., & Yla-Herttuala, S. (2011). Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther, 18, 743–749.

    Article  PubMed  CAS  Google Scholar 

  32. Henry, T. D., Grines, C. L., Watkins, M. W., Dib, N., Barbeau, G., Moreadith, R., et al. (2007). Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol, 50, 1038–1046.

    Article  PubMed  CAS  Google Scholar 

  33. Hoshino, K., Kimura, T., De Grand, A. M., Yoneyama, R., Kawase, Y., Houser, S., et al. (2006). Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Ther, 13, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  34. Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., Price, E. T., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation, 112, I150–I156.

    PubMed  Google Scholar 

  35. Ishikawa K, Ladage D, Tilemann L, Fish K, Kawase Y, Hajjar RJ (2011) Gene transfer for ischemic heart failure in a preclinical model. J Vis Exp

  36. Ishikawa, K., Tilemann, L., Ladage, D., Aguero, J., Leonardson, L., Fish, K., et al. (2012). Cardiac gene therapy in large animals: bridge from bench to bedside. Gene Ther, 19, 670–677.

    Article  PubMed  CAS  Google Scholar 

  37. Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., et al. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail, 15, 171–181.

    Article  PubMed  CAS  Google Scholar 

  38. Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., et al. (2011). Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124, 304–313.

    Article  PubMed  CAS  Google Scholar 

  39. Kastrup, J., Jorgensen, E., Fuchs, S., Nikol, S., Botker, H. E., Gyongyosi, M., et al. (2011). A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention, 6, 813–818.

    Article  PubMed  Google Scholar 

  40. Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol, 45, 982–988.

    Article  PubMed  CAS  Google Scholar 

  41. Kaye, D. M., Byrne, M. J., & Power, J. M. (2010). Reply to Bridges. Gene Ther, 17, 565–566.

    Article  PubMed  CAS  Google Scholar 

  42. Kaye, D. M., Preovolos, A., Marshall, T., Byrne, M., Hoshijima, M., Hajjar, R., et al. (2007). Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol, 50, 253–260.

    Article  PubMed  CAS  Google Scholar 

  43. Kim JS, Hwang HY, Cho KR, Park EA, Lee W, Paeng JC, Lee DS, Kim HK, Sohn DW, Kim KB (2012) Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study. Gene Ther

  44. Klugherz, B. D., Song, C., DeFelice, S., Cui, X., Lu, Z., Connolly, J., et al. (2002). Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. Hum Gene Ther, 13, 443–454.

    Article  PubMed  CAS  Google Scholar 

  45. Kornowski, R., Leon, M. B., Fuchs, S., Vodovotz, Y., Flynn, M. A., Gordon, D. A., et al. (2000). Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol, 35, 1031–1039.

    Article  CAS  Google Scholar 

  46. Koruth, J. S., Aryana, A., Dukkipati, S. R., Pak, H. N., Kim, Y. H., Sosa, E. A., et al. (2011). Unusual complications of percutaneous epicardial access and epicardial mapping and ablation of cardiac arrhythmias. Circ Arrhythm Electrophysiol, 4, 882–888.

    Article  PubMed  Google Scholar 

  47. Kukula, K., Chojnowska, L., Dabrowski, M., Witkowski, A., Chmielak, Z., Skwarek, M., et al. (2011). Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J, 161, 581–589.

    Article  PubMed  CAS  Google Scholar 

  48. Kutryk, M. J., Foley, D. P., van den Brand, M., Hamburger, J. N., van der Giessen, W. J., deFeyter, P. J., et al. (2002). Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. J Am Coll Cardiol, 39, 281–287.

    Article  PubMed  CAS  Google Scholar 

  49. Laing, S. T., & McPherson, D. D. (2009). Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res, 83, 626–635.

    Article  PubMed  CAS  Google Scholar 

  50. Laitinen, M., Hartikainen, J., Hiltunen, M. O., Eranen, J., Kiviniemi, M., Narvanen, O., et al. (2000). Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther, 11, 263–270.

    Article  PubMed  CAS  Google Scholar 

  51. Lederman, R. J., Guttman, M. A., Peters, D. C., Thompson, R. B., Sorger, J. M., Dick, A. J., et al. (2002). Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation, 105, 1282–1284.

    PubMed  Google Scholar 

  52. Li, J., Li, G., Huang, C., Jiang, H., Tang, Q., Xu, J., et al. (2002). Comparative study of catheter-mediated gene transfer into heart. Chin Med J (Engl), 115, 612–613.

    CAS  Google Scholar 

  53. Lin, H., Parmacek, M. S., Morle, G., Bolling, S., & Leiden, J. M. (1990). Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation, 82, 2217–2221.

    Article  PubMed  CAS  Google Scholar 

  54. Logeart, D., Hatem, S. N., Heimburger, M., Le Roux, A., Michel, J. B., & Mercadier, J. J. (2001). How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther, 12, 1601–1610.

    Article  PubMed  CAS  Google Scholar 

  55. Losordo, D. W., Vale, P. R., Hendel, R. C., Milliken, C. E., Fortuin, F. D., Cummings, N., et al. (2002). Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105, 2012–2018.

    Article  PubMed  CAS  Google Scholar 

  56. Losordo, D. W., Vale, P. R., Symes, J. F., Dunnington, C. H., Esakof, D. D., Maysky, M., et al. (1998). Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation, 98, 2800–2804.

    Article  PubMed  CAS  Google Scholar 

  57. Maurice, J. P., Hata, J. A., Shah, A. S., White, D. C., McDonald, P. H., Dolber, P. C., et al. (1999). Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest, 104, 21–29.

    Article  PubMed  CAS  Google Scholar 

  58. Muhlhauser, J., Jones, M., Yamada, I., Cirielli, C., Lemarchand, P., Gloe, T. R., et al. (1996). Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther, 3, 145–153.

    PubMed  CAS  Google Scholar 

  59. Neubauer, S. (2007). The failing heart—an engine out of fuel. N Engl J Med, 356, 1140–1151.

    Article  PubMed  Google Scholar 

  60. Numaguchi, Y., Okumura, K., Harada, M., Naruse, K., Yamada, M., Osanai, H., et al. (2004). Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. Cardiovasc Res, 61, 177–185.

    Article  PubMed  CAS  Google Scholar 

  61. O'Donnell, J. M., & Lewandowski, E. D. (2005). Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther, 12, 958–964.

    Article  PubMed  Google Scholar 

  62. Otsuka, F., Finn, A. V., Yazdani, S. K., Nakano, M., Kolodgie, F. D., & Virmani, R. (2012). The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol, 9, 439–453.

    Article  PubMed  CAS  Google Scholar 

  63. Park, S. W., Gwon, H. C., Jeong, J. O., Byun, J., Kang, H. S., You, J. R., et al. (2001). Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Hum Gene Ther, 12, 893–903.

    Article  PubMed  CAS  Google Scholar 

  64. Perlstein, I., Connolly, J. M., Cui, X., Song, C., Li, Q., Jones, P. L., et al. (2003). DNA delivery from an intravascular stent with a denatured collagen–polylactic–polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther, 10, 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  65. Raake, P., von Degenfeld, G., Hinkel, R., Vachenauer, R., Sandner, T., Beller, S., et al. (2004). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol, 44, 1124–1129.

    Article  PubMed  CAS  Google Scholar 

  66. Ripa, R. S., Wang, Y., Jorgensen, E., Johnsen, H. E., Hesse, B., & Kastrup, J. (2006). Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J, 27, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  67. Roques, C., Salmon, A., Fiszman, M. Y., Fattal, E., & Fromes, Y. (2007). Intrapericardial administration of novel DNA formulations based on thermosensitive Poloxamer 407 gel. Int J Pharm, 331, 220–223.

    Article  PubMed  CAS  Google Scholar 

  68. Rosengart, T. K., Lee, L. Y., Patel, S. R., Sanborn, T. A., Parikh, M., Bergman, G. W., et al. (1999). Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation, 100, 468–474.

    Article  PubMed  CAS  Google Scholar 

  69. Sanborn, T. A., Hackett, N. R., Lee, L. Y., El-Sawy, T., Blanco, I., Tarazona, N., et al. (2001). Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Catheter Cardiovasc Interv, 52, 260–266.

    Article  PubMed  CAS  Google Scholar 

  70. Sasano, T., Kikuchi, K., McDonald, A. D., Lai, S., & Donahue, J. K. (2007). Targeted high-efficiency, homogeneous myocardial gene transfer. J Mol Cell Cardiol, 42, 954–961.

    Article  PubMed  CAS  Google Scholar 

  71. Smits, P. C., van Langenhove, G., Schaar, M., Reijs, A., Bakker, W. H., van der Giessen, W. J., et al. (2002). Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovasc Drugs Ther, 16, 527–533.

    Article  PubMed  CAS  Google Scholar 

  72. Stewart, D. J., Hilton, J. D., Arnold, J. M., Gregoire, J., Rivard, A., Archer, S. L., et al. (2006). Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther, 13, 1503–1511.

    Article  PubMed  CAS  Google Scholar 

  73. Stewart, D. J., Kutryk, M. J., Fitchett, D., Freeman, M., Camack, N., Su, Y., et al. (2009). VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther, 17, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  74. Sylven, C., Sarkar, N., Insulander, P., Kenneback, G., Blomberg, P., Islam, K., et al. (2002). Catheter-based transendocardial myocardial gene transfer. J Interv Cardiol, 15, 7–13.

    Article  PubMed  Google Scholar 

  75. Sylven, C., Sarkar, N., Ruck, A., Drvota, V., Hassan, S. Y., Lind, B., et al. (2001). Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGF-A165 plasmid in patients with inoperable angina pectoris. Coron Artery Dis, 12, 239–243.

    Article  PubMed  CAS  Google Scholar 

  76. Symes, J. F., Losordo, D. W., Vale, P. R., Lathi, K. G., Esakof, D. D., Mayskiy, M., et al. (1999). Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg, 68, 830–836. discussion 836–837.

    Article  PubMed  CAS  Google Scholar 

  77. Tahlil, O., Brami, M., Feldman, L. J., Branellec, D., & Steg, P. G. (1997). The Dispatch catheter as a delivery tool for arterial gene transfer. Cardiovasc Res, 33, 181–187.

    Article  PubMed  CAS  Google Scholar 

  78. Thompson, C. A., Nasseri, B. A., Makower, J., Houser, S., McGarry, M., Lamson, T., et al. (2003). Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol, 41, 1964–1971.

    Article  Google Scholar 

  79. Tilemann, L., Ishikawa, K., Weber, T., & Hajjar, R. J. (2012). Gene therapy for heart failure. Circ Res, 110, 777–793.

    Article  PubMed  CAS  Google Scholar 

  80. Tse, H. F., Xue, T., Lau, C. P., Siu, C. W., Wang, K., Zhang, Q. Y., et al. (2006). Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation, 114, 1000–1011.

    Article  PubMed  CAS  Google Scholar 

  81. Vale, P. R., Losordo, D. W., Milliken, C. E., McDonald, M. C., Gravelin, L. M., Curry, C. M., et al. (2001). Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation, 103, 2138–2143.

    Article  PubMed  CAS  Google Scholar 

  82. Vale, P. R., Losordo, D. W., Tkebuchava, T., Chen, D., Milliken, C. E., & Isner, J. M. (1999). Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol, 34, 246–254.

    Article  PubMed  CAS  Google Scholar 

  83. Vandendriessche, T., Thorrez, L., Acosta-Sanchez, A., Petrus, I., Wang, L., Ma, L., et al. (2007). Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost, 5, 16–24.

    Article  PubMed  CAS  Google Scholar 

  84. Varenne, O., Gerard, R. D., Sinnaeve, P., Gillijns, H., Collen, D., & Janssens, S. (1999). Percutaneous adenoviral gene transfer into porcine coronary arteries: is catheter-based gene delivery adapted to coronary circulation? Hum Gene Ther, 10, 1105–1115.

    Article  PubMed  CAS  Google Scholar 

  85. Vassalli, G., Bueler, H., Dudler, J., von Segesser, L. K., & Kappenberger, L. (2003). Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol, 90, 229–238.

    Article  PubMed  Google Scholar 

  86. von der Leyen, H. E., Mugge, A., Hanefeld, C., Hamm, C. W., Rau, M., Rupprecht, H. J., et al. (2011). A prospective, single-blind, multicenter, dose escalation study of intracoronary iNOS lipoplex (CAR-MP583) gene therapy for the prevention of restenosis in patients with de novo or restenotic coronary artery lesion (REGENT I extension). Hum Gene Ther, 22, 951–958.

    Article  PubMed  Google Scholar 

  87. Wang, K., Kessler, P. D., Zhou, Z., Penn, M. S., Forudi, F., Zhou, X., et al. (2003). Local adenoviral-mediated inducible nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model. Mol Ther, 7, 597–603.

    Article  PubMed  CAS  Google Scholar 

  88. Wasala, N. B., Shin, J. H., & Duan, D. (2011). The evolution of heart gene delivery vectors. J Gene Med, 13, 557–565.

    Article  PubMed  CAS  Google Scholar 

  89. White, J. D., Thesier, D. M., Swain, J. B., Katz, M. G., Tomasulo, C., Henderson, A., et al. (2011). Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther, 18, 546–552.

    Article  PubMed  CAS  Google Scholar 

  90. Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., et al. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  91. Yang, Z. J., Zhang, Y. R., Chen, B., Zhang, S. L., Jia, E. Z., Wang, L. S., et al. (2009). Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease. Mol Biol Rep, 36, 1323–1329.

    Article  PubMed  CAS  Google Scholar 

  92. Youssef, E. A., Zhang, P., Rogers, P. I., Tremble, P., Rokovich, J., Johnstone, B. H., et al. (2005). Enhancing myocardial plasmid expression by retrograde coronary venous delivery. Catheter Cardiovasc Interv, 65, 528–534.

    Article  PubMed  Google Scholar 

Download references

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotake Ishikawa.

Additional information

Associate Editor Jozef Bartunek oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, K., Aguero, J., Naim, C. et al. Percutaneous Approaches for Efficient Cardiac Gene Delivery. J. of Cardiovasc. Trans. Res. 6, 649–659 (2013). https://doi.org/10.1007/s12265-013-9479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9479-7

Keywords

Navigation