Biomarkers of Diastolic Dysfunction and Myocardial Fibrosis: Application to Heart Failure with a Preserved Ejection Fraction

Article

Abstract

Comprehensive diagnostic criteria, accurate prognostic indicators, and effective treatment for patients with heart failure and a preserved ejection fraction (HFpEF) represent a critically important unmet need in cardiovascular medicine. Novel approaches to fill this unmet need are likely to be facilitated by targeting the underlying and unique pathophysiologic mechanisms that characterize patients with HFpEF. Two possible targets include hemodynamic overload evidenced by increased LV diastolic pressure (LVDP) and myocardial fibrosis evidenced by increased extracellular matrix fibrillar collagen. The measurement of LVDP and fibrosis generally requires either invasive procedures and/or complex and sophisticated imaging techniques. However, biomarkers measured in the plasma have been shown to accurately reflect changes in hemodynamic load and myocardial fibrosis and may have important application to the management of patients with HFpEF. The purpose of this review is to describe current and future applications of biomarkers in the management of patients with HFpEF.

Keywords

Heart Failure Biomarkers Fibrosis 

References

  1. 1.
    Owan, T., Hodge, D., Herges, D., et al. (2006). Heart failure with preserved ejection fraction: trends in prevalence and outcomes. The New England Journal of Medicine, 355, 308.CrossRefGoogle Scholar
  2. 2.
    Steinberg, B. A., Zhao, X., Heidenreich, P. A., et al. (2012). Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation, 126, 65–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Campbell, R., Jhund, P. S., Castagno, D., Hawkins, N. M., Petrie, M. C., & McMurray, J. J. V. (2012). What have we learnt about patients with heart failure and preserved ejection fraction (HF-PEF) from DIG-PEF, CHARM-Preserved and I-Preserve? Journal of the American College of Cardiology, 60, 2349–2356.PubMedCrossRefGoogle Scholar
  4. 4.
    Farr, M. J., Lang, C. C., Lamanca, J. J., Zile, M. R., Francis, G., Tavazzi, L., et al. (2008). Cardiopulmonary exercise variables in diastolic versus systolic heart failure. The American Journal of Cardiology, 102, 203–206.PubMedCrossRefGoogle Scholar
  5. 5.
    Rector, T. S., Carson, P. E., Anand, I. S., McMurray, J. J., Zile, M. R., McKelvie, R. S., et al. (2012). Assessment of long-term effects of irbesartan on heart failure with preserved ejection fraction as measured by the Minnesota Living with Heart Failure Questionnaire in the I-PRESERVE Trial. Circulation. Heart Failure, 5, 217–225.PubMedCrossRefGoogle Scholar
  6. 6.
    Zile, M.R., Kjellstrom, B., Bennett, T., Cho, Y., Baicu, C., Aaron, M., Abraham, W., Bourge, R.C., Kueffer, F. (2013). Effects of exercise on left ventricular systolic and diastolic properties in patients with heart failure and a preserved ejection fraction versus heart failure and a reduced ejection fraction. Circulation. Heart Failure. doi:10.1161/CIRCHEARTFAILURE.112.000216.
  7. 7.
    Little, W. C., & Zile, M. R. (2012). HFpEF: cardiovascular abnormalities not just co-morbidities. Circulation Heart Fail., 5, 669–671.CrossRefGoogle Scholar
  8. 8.
    Gaasch, W. H., & Zile, M. R. (2011). Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and relative wall thickness. Journal of the American College of Cardiology, 58, 1733–1740.PubMedCrossRefGoogle Scholar
  9. 9.
    Zile, M. R., Gottdiener, J. S., Hetzel, S. J., McMurray, J. J., Komajda, M., McKelvie, R., et al. (2011). Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation, 124, 2491–2501.PubMedCrossRefGoogle Scholar
  10. 10.
    Gaasch, W. H., Delorey, D. E., Kueffer, F. J., & Zile, M. R. (2009). Distribution of left ventricular ejection fraction in patients with ischemic and hypertensive heart disease and chronic heart failure. The American Journal of Cardiology, 104, 1413–1415.PubMedCrossRefGoogle Scholar
  11. 11.
    Aurigemma, G. P., Zile, M. R., & Gaasch, W. H. (2006). Contractile behavior in the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation, 113, 296–304.PubMedCrossRefGoogle Scholar
  12. 12.
    Baicu, C. F., Zile, M. R., Aurigemma, G. P., & Gaasch, W. H. (2005). Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation, 111, 2306–2312.PubMedCrossRefGoogle Scholar
  13. 13.
    Zile, M. R., Baicu, C. F., & Gaasch, W. H. (2004). Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. The New England Journal of Medicine, 350, 1953–1959.PubMedCrossRefGoogle Scholar
  14. 14.
    Borbely, A., van der Velden, J., Papp, Z., Bronzwaer, J. G., Edes, I., Stienen, G. J., et al. (2005). Cardiomyocyte stiffness in diastolic heart failure. Circulation, 111, 774–781.PubMedCrossRefGoogle Scholar
  15. 15.
    van Heerebeek, L., Hamdani, N., Handoko, M. L., Falcao-Pires, I., Musters, R. J., Kupreishvili, K., et al. (2008). Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation, 117, 43–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Westermann, D., Kasner, M., Steendijk, P., Spillmann, F., Riad, A., Weitmann, K., et al. (2008). Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation, 117, 2051–2060.PubMedCrossRefGoogle Scholar
  17. 17.
    Ahmed, A., Rich, M. W., Fleg, J. L., Zile, M. R., Young, J. B., Kitzman, D. W., et al. (2006). Effects of digoxin on morbidity and mortality in diastolic heart failure: The Ancillary Digitalis Investigation Group Trial. Circulation, 114, 397–403.PubMedCrossRefGoogle Scholar
  18. 18.
    Yusuf, S., Pfeffer, M. A., Swedberg, K., Granger, C. B., Held, P., McMurray, J. J., et al. (2003). Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM Preserved Trial. The Lancet, 362, 777–781.CrossRefGoogle Scholar
  19. 19.
    Cleland, J. G. F., Tendera, M., Adamus, J., Freemantle, N., Polonski, L., & Taylor, J. (2006). The Perindopril in Elderly People with Chronic Heart Failure (PEP-CHF) Study. European Heart Journal, 27, 2338–2345.PubMedCrossRefGoogle Scholar
  20. 20.
    Massie, B. M., Carson, P. E., McMurray, J. J., Komajda, M., McKelvie, R., Zile, M. R., et al. (2008). Irbesartan in patients with heart failure and preserved ejection fraction. The New England Journal of Medicine, 359, 2456–2467.PubMedCrossRefGoogle Scholar
  21. 21.
    van Veldhuisen, D. J., Cohen-Solal, A., Böhm, M., Anker, S. D., Babalis, D., Roughton, M., et al. (2009). Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). Journal of the American College of Cardiology, 53, 2150–2158.PubMedCrossRefGoogle Scholar
  22. 22.
    McMurray, J. J., Adamopoulos, S., Anker, S. D., Auricchio, A., Bohm, M., Dickstein, K., et al. (2012). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Heart Journal, 33, 1787–1847.PubMedCrossRefGoogle Scholar
  23. 23.
    Braunwald, E. (2008). Biomarkers in heart failure. The New England Journal of Medicine, 358, 2148–2159.PubMedCrossRefGoogle Scholar
  24. 24.
    van Kimmenade, R. R., & Januzzi, J. L. (2012). Emerging biomarkers in heart failure. Clinical Chemistry, 58, 127–138.PubMedCrossRefGoogle Scholar
  25. 25.
    Azevedo, C. F., Nigri, M., Higuchi, M. L., Pomerantzeff, P. M., Spina, G. S., Sampaio, R. O., et al. (2010). Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. Journal of the American College of Cardiology, 56, 278–287.PubMedCrossRefGoogle Scholar
  26. 26.
    Spinale, F. G., Janicki, J. S., & Zile, M. R. (2013). Membrane-associated matrix proteolysis and heart failure. Circulation Research, 112, 195–208.PubMedCrossRefGoogle Scholar
  27. 27.
    Spinale, F.G., Zile, M.R. (2013) Heart failure progression and recognition—categorical considerations for translation research. Circ Res (in press).Google Scholar
  28. 28.
    Wang, T. J., Wollert, K. C., Larson, M. G., Coglianese, E., McCabe, E. L., Cheng, S., et al. (2012). Prognostic utility of novel biomarkers of cardiovascular stress; The Framingham Heart Study. Circulation, 126, 1596–1604.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang, Y. C., Yu, C. C., Chiu, F. C., Tsai, C. T., Lai, L. P., Hwang, J. J., et al. (2013). Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Cardiol Fail., 19, 163–168.CrossRefGoogle Scholar
  30. 30.
    Bhardwaj, A., & Januzzai, J. L. (2010). ST2: a novel biomarker for heart failure. Expert Review of Molecular Diagnostics, 10, 459–464.PubMedCrossRefGoogle Scholar
  31. 31.
    deFilippi, C. R., & Felker, G. M. (2010). Galectin-3 in heart failure—linking fibrosis, remodeling and progression. Euro Cardiology, 6, 33–36.Google Scholar
  32. 32.
    de Boer, R. A., Lok, D. J., Jaarsma, T., van der Meer, P., Voors, A. A., Hillege, H. L., et al. (2011). Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine, 43, 60–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu, L., Ruifrok, W. P., Meissner, M., Bos, E. M., van Goor, H., Sanjabi, B., et al. (2013). Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circulation. Heart Failure, 6, 107–117.PubMedCrossRefGoogle Scholar
  34. 34.
    van der Velde, A. R., Gullestad, L., Ueland, T., Aukrust, P., Guo, Y., Adourian, A., et al. (2013). Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circulation Heart Failure, 6, 219–226.PubMedCrossRefGoogle Scholar
  35. 35.
    van Veldhuisen, D. J., Linssen, G. C., Jaarsma, T., van Gilst, W. H., Hoes, A. W., Tijssen, J. G., et al. (2013). B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. Journal of the American College of Cardiology, 61, 1498–1506.PubMedCrossRefGoogle Scholar
  36. 36.
    Januzzi, J. L., Jr., Rehman, S. U., Mohammed, A. A., Bhardwaj, A., Barajas, L., Barajas, J., et al. (2011). Use of amino-terminal pro-b-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. Journal of the American College of Cardiology, 58, 1881–1889.PubMedCrossRefGoogle Scholar
  37. 37.
    Maisel, A. (2011). Biomonitoring and biomarker-guided therapy: the next step in heart failure and biomarker research. Journal of the American College of Cardiology, 58, 1890–1892.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Kimmenade, R. R. J., & Januzzi, J. L. (2012). Using natriuretic peptides to ‘guide’ therapy in heart failure. Euro Cardiology., 8, 36–39.Google Scholar
  39. 39.
    Richards, A. M. (2008). Serial measurements of plasma b-type natriuretic peptides: what do they tell us? Journal of the American College of Cardiology, 52, 1004–1005.PubMedCrossRefGoogle Scholar
  40. 40.
    Maisel, A., Barnard, D., Jaski, B., Frivold, G., Marais, J., Azer, M., et al. (2013). Primary results of the HABIT (HF Assessment with Bnp In The Home) Trial. Journal of the American College of Cardiology, 61, 1726–1735.PubMedCrossRefGoogle Scholar
  41. 41.
    Lainchbury, J. G., Troughton, R. W., Strangman, K. M., Frampton, C. M., Pilbrow, A., Yandle, T. G., et al. (2009). N-Terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) Trial. Journal of the American College of Cardiology, 55, 53–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Weiner, R. B., Baggish, A. L., Chen-Tournoux, A., Marshall, J. E., Gaggin, H. K., Bhardwaj, A., et al. (2013). Improvement in structural and functional echocardiographic parameters during chronic heart failure therapy guided by natriuretic peptides: mechanistic insights from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) Study. European Journal of Heart Failure, 15, 342–351.PubMedCrossRefGoogle Scholar
  43. 43.
    Anand, I. S., Rector, T. S., Cleland, J. G., Kuskowski, M., McKelvie, R. S., Persson, H., et al. (2011). Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE Trial. Circulation. Heart Failure, 4, 569–577.PubMedCrossRefGoogle Scholar
  44. 44.
    McKelvie, R. S., Komajda, M., McMurray, J., Zile, M. R., Ptaszynska, A., Donovan, M., et al. (2010). Baseline plasma NT-proBNP and clinical characteristics: results from the Irbesartan In Heart Failure With Preserved Ejection Fraction Trial. Journal of Cardiac Failure, 16(2), 128–134.PubMedCrossRefGoogle Scholar
  45. 45.
    Jhund PS, Anand IS, Komajda M, McKelvie RS, Zile MR, Massie B, Carson PE, McMurray JJV. (2013). Change in N-terminal pro-B-type natriuretic peptide levels and outcomes in heart failure with preserved ejection fraction: an analysis of the I-PRESERVE study. Eur Heart J (in press).Google Scholar
  46. 46.
    Iwanaga, Y., Nishi, I., Furuichi, S., Noguchi, T., Sase, K., Kihara, Y., et al. (2006). B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. Journal of the American College of Cardiology, 47(4), 742–748.PubMedCrossRefGoogle Scholar
  47. 47.
    Zile, M. R., Bennett, T. D., St. John Sutton, M., Cho, Y. K., Adamson, P. B., Aaron, M. F., et al. (2008). Transition from chronic compensated to acute decompensated heart failure: pathophysiologic insights obtained from continuous monitoring of intracardiac pressures. Circulation, 118(14), 1433–1441.PubMedCrossRefGoogle Scholar
  48. 48.
    Stevenson, L. W., Zile, M., Bennett, T. D., Kueffer, F. J., Jessup, M. L., Adamson, P., et al. (2010). Chronic ambulatory intracardiac pressures and future heart failure events. Circulation. Heart Failure, 3, 580–587.PubMedCrossRefGoogle Scholar
  49. 49.
    Abraham, W. T., Adamson, P. B., Bourge, R. C., Aaron, M. F., Costanzo, M. R., Stevenson, L. W., et al. (2011). Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. The Lancet, 377, 658–666.CrossRefGoogle Scholar
  50. 50.
    Solomon, S. D., Zile, M. R., Pieske, B., Voors, A., Shah, A., Kraigher-Krainer, E., et al. (2012). The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase II randomized-controlled trial. The Lancet, 380, 1387–1395.CrossRefGoogle Scholar
  51. 51.
    Chen, H. H., Glockner, J. F., Schirger, J. A., Cataliotti, A., Redfield, M. M., & Jr. Burnett, J. C. (2012). Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. Journal of the American College of Cardiology, 60, 2305–2312.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Connor, C. M., Starling, R. C., Hernandez, A. F., et al. (2011). Effect of nesiritide in patients with acute decompensated heart failure. The New England Journal of Medicine, 365, 32–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Baicu, C. F., Li, J., Zhang, Y., Kasiganesan, H., Cooper, G., Zile, M. R., et al. (2012). Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast dependent post-synthetic procollagen processing. American Journal of Physiology-Heart and Circulatory Physiology, 303, H1128–H1134. PMCID: In Progress.PubMedCrossRefGoogle Scholar
  54. 54.
    Zile, M. R., Baicu, C. F., Stroud, R. E., Van Laer, A., Arroyo, J., Mukherjee, R., et al. (2012). Pressure-overload department membrane-type 1 matrix metalloproteinase induction: relationship to LV remodeling and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 302, H1429–H1437.PubMedCrossRefGoogle Scholar
  55. 55.
    Zile, M. R., DeSantis, S. M., Baicu, C. F., Stroud, R. E., Thompson, S. B., McClure, C. D., et al. (2011). Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circulation. Heart Failure, 4, 246–256.PubMedCrossRefGoogle Scholar
  56. 56.
    Martos, R., Baugh, J., Ledwidge, M., O'Loughlin, C., Conlon, C., Patle, A., et al. (2007). Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation, 115, 888–895.PubMedCrossRefGoogle Scholar
  57. 57.
    López, B., González, A., & Díez, J. (2010). Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation, 121, 1645–1654.PubMedCrossRefGoogle Scholar
  58. 58.
    González, A., López, B., Querejeta, R., Zubillaga, E., Echeverría, T., & Díez, J. (2010). Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension, 55, 1418–1424.PubMedCrossRefGoogle Scholar
  59. 59.
    Krum, H., Elsik, M., Schneider, H. G., Ptaszynska, A., Black, M., Carson, P., et al. (2011). Relation of peripheral collagen markers to death and hospitalisation in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen sub-study. Cir Heart Fail, 4, 561–568.CrossRefGoogle Scholar
  60. 60.
    Bradshaw, A. D., Baicu, C. F., Rentz, T. J., Van Laer, A. O., Boggs, J., Lacy, J. M., et al. (2009). Pressure-overload induced alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Circulation, 119, 269–280.PubMedCrossRefGoogle Scholar
  61. 61.
    Bradshaw, A. D., Baicu, C. F., Rentz, T. J., Van Laer, A. O., Bonnema, D. D., & Zile, M. R. (2010). Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. American Journal of Physiology - Heart and Circulatory Physiology, 298, H614–H622.PubMedCrossRefGoogle Scholar
  62. 62.
    Baicu, C. F., Zhang, Y., Van Laer, A. O., Renaud, L., Zile, M. R., & Bradshaw, A. D. (2012). Effects of the absence of procollagen C-endopeptidase enhancer-2 (PCOLCE-2) on myocardial collagen accumulation in chronic pressure-overload. American Journal of Physiology - Heart and Circulatory Physiology, 303, H234–H240.PubMedCrossRefGoogle Scholar
  63. 63.
    Bartunek, J., Delrue, L., Van Durme, F., Muller, O., Casselman, F., De Wiest, B., et al. (2008). Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. Journal of the American College of Cardiology, 52(25), 2166–2174.PubMedCrossRefGoogle Scholar
  64. 64.
    Manzano-Fernández, S., Mueller, T., Pascual-Figal, D., Truong, Q. A., & Januzzi, J. L. (2011). Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. The American Journal of Cardiology, 107(2), 259–267.PubMedCrossRefGoogle Scholar
  65. 65.
    Rehman, S. U., Mueller, T., & Januzzi, J. L., Jr. (2008). Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. Journal of the American College of Cardiology, 52(18), 1458–1465.PubMedCrossRefGoogle Scholar
  66. 66.
    Gopal, D. M., Kommineni, M., Ayalon, N., Christian Koelbl, C., Rivka Ayalon, R., Andreia Biolo, A., et al. (2012). Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc., 1, e000760. doi:10.1161/JAHA.112.000760.PubMedCrossRefGoogle Scholar
  67. 67.
    Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R., & Januzzi, J. L. (2010). Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. European Journal of Heart Failure, 12(8), 826–832.PubMedCrossRefGoogle Scholar
  68. 68.
    van Kimmenade, R. R., Januzzi, J. L., Jr., Ellinor, P. T., Sharma, U. C., Bakker, J. A., Low, A. F., et al. (2006). Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. Journal of the American College of Cardiology, 48(6), 1217–1224.PubMedCrossRefGoogle Scholar
  69. 69.
    de Boer RA, Van Veldhuisen DJ, deFilippi C, Muntendam P, Adourian AS, Guo Y, Januzzi JL. (2011). Plasma galectin-3 is associated with near-term rehospitalization in heart failure. Poster Abstract #297, 15th Annual Scientific Meeting of the Heart Failure Society of America, Boston, MA, 18–21 SeptGoogle Scholar
  70. 70.
    Martos, R., Baugh, J., Ledwidge, M., O'Loughlin, C., Murphy, N. F., Conlon, C., et al. (2009). Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. European Journal of Heart Failure, 11(2), 191–197.PubMedCrossRefGoogle Scholar
  71. 71.
    Barasch, E., Gottdiener, J. S., Aurigemma, G., Kitzman, D. W., Han, J., Kop, W. J., et al. (2009). Association between elevated fibrosis markers and heart failure in the elderly: the Cardiovascular Health Study. Circulation. Heart Failure, 2(4), 303–310.PubMedCrossRefGoogle Scholar
  72. 72.
    Kitahara, T., Takeishi, Y., Arimoto, T., Niizeki, T., Koyama, Y., Sasaki, T., et al. (2007). Serum carboxy-terminal telopeptide of type I collagen (ICTP) predicts cardiac events in chronic heart failure patients with preserved left ventricular systolic function. Circulation Journal, 71(6), 929–935.PubMedCrossRefGoogle Scholar
  73. 73.
    Barasch, E., Gottdiener, J. S., Aurigemma, G., Kitzman, D. W., Han, J., Kop, W. J., et al. (2011). The relationship between serum markers of collagen turnover and cardiovascular outcome in the elderly: the Cardiovascular Health Study. Circulation. Heart Failure, 4(6), 733–739.PubMedCrossRefGoogle Scholar
  74. 74.
    Ahmed, S. H., Clark, L. L., Pennington, W. R., Webb, C. S., Bonnema, D. D., Leonardi, A. H., et al. (2006). Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation, 113(17), 2089–2096.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineMedical University of South Carolina and Ralph H. JohnsonCharlestonUSA
  2. 2.Department of Veterans Affairs Medical CenterMedical University of South Carolina and Ralph H. JohnsonCharlestonUSA

Personalised recommendations