Skip to main content
Log in

Plasma Profiles of Matrix Metalloproteinases and Tissue Inhibitors of the Metalloproteinases Predict Recurrence of Atrial Fibrillation Following Cardioversion

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atrial fibrosis is considered to contribute to atrial fibrillation (AF) recurrence following cardioversion. This study tested the hypothesis that circulating levels of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) can predict AF recurrence postcardioversion. Precardioversion plasma samples (n = 82) were assayed for MMPs (eight types), TIMPs (all four types), N-terminus pro B-type natriuretic peptide, and high-sensitivity C-reactive protein levels. Patients were followed for AF recurrence postcardioversion. Despite 100 % restoration of sinus rhythm, 36 (44 %) reverted to AF within 3 months. Left atrial volume was increased in patients in whom AF recurred. Precardioversion MMP-9 was higher and TIMP-4 lower with AF recurrence. MMP-9, MMP-3, and TIMP-4 independently predicted AF recurrence. In multivariate analysis, combination of MMP-9, MMP-3, and TIMP-4 increased prediction of AF recurrence. Circulating levels of MMPs and TIMPs predict AF recurrence postcardioversion and may be used in a novel biomarker panel to guide AF stratification and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benjamin, E. J., Wolf, P. A., & Kannel, W. B. (1997). The epidemiology of atrial fibrillation. In R. H. Falk & P. J. Podrid (Eds.), Atrial fibrillation: mechanisms and management. Philadelphia: Lippincott-Raven.

    Google Scholar 

  2. Camm, A. J., Kirchhof, P., Lip, G. Y., et al. (2010). Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European Heart Journal, 31, 2369–2429.

    Article  PubMed  Google Scholar 

  3. Kostin, S., Klein, G., Szalay, Z., Hein, S., Bauer, E. P., & Schaper, J. (2002). Structural correlate of atrial fibrillation in human patients. Cardiovascular Research, 54, 361–379.

    Article  PubMed  CAS  Google Scholar 

  4. Polyakova, V., Miyagawa, S., Szalay, Z., Risteli, J., & Kostin, S. (2008). Atrial extracellular matrix remodelling in patients with atrial fibrillation. Journal of Cellular and Molecular Medicine, 12, 189–208.

    Article  PubMed  CAS  Google Scholar 

  5. Everett, T. H., & Olgin, J. E. (2007). Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm, 4, S24–S27.

    Article  PubMed  Google Scholar 

  6. Staszewsky, L., Wong, M., Masson, S., et al. (2011). Left atrial remodeling and response to valsartan in the prevention of recurrent atrial fibrillation: the GISSI-AF echocardiographic substudy. Circulation Cardiovascular Imaging, 4, 721–728.

    Article  PubMed  Google Scholar 

  7. Ashihara, T., Haraguchi, R., Nakazawa, K., et al. (2012). The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation. Circulation Research, 110, 275–284.

    Article  PubMed  CAS  Google Scholar 

  8. Nattel, S. (2004). Defining “culprit mechanisms” in arrhythmogenic cardiac remodeling. Circulation Research, 94, 1403–1405.

    Article  PubMed  CAS  Google Scholar 

  9. Stiles, M. K., John, B., Wong, C. X., et al. (2009). Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the “second factor”. Journal of the American College of Cardiology, 53, 1182–1191.

    Article  PubMed  Google Scholar 

  10. Marrouche, N. F., Dresing, T., Cole, C., et al. (2002). Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: impact of different catheter technologies. Journal of the American College of Cardiology, 40, 464–474.

    Article  PubMed  Google Scholar 

  11. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87, 1285–1342.

    Article  PubMed  CAS  Google Scholar 

  12. Mukherjee, R., Herron, A. R., Lowry, A. S., et al. (2006). Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. The American Journal of Cardiology, 97, 532–537.

    Article  PubMed  CAS  Google Scholar 

  13. Nakano, Y., Niida, S., Dote, K., et al. (2004). Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. Journal of the American College of Cardiology, 43, 818–825.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, J., Cui, G., Esmailian, F., et al. (2004). Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation, 109, 363–368.

    Article  PubMed  CAS  Google Scholar 

  15. Kallergis, E. M., Manios, E. G., Kanoupakis, E. M., et al. (2008). Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: biochemical assessment of collagen type-I turnover. Journal of the American College of Cardiology, 52, 211–215.

    Article  PubMed  CAS  Google Scholar 

  16. Psychari, S. N., Chatzopoulos, D., Iliodromitis, E. K., Apostolou, T. S., & Kremastinos, D. T. (2011). C-reactive protein, interleukin 6, and N-terminal pro-brain natriuretic peptide following cardioversion of atrial fibrillation: is there a role of biomarkers in arrhythmia recurrence? Angiology, 62, 310–316.

    Article  PubMed  CAS  Google Scholar 

  17. Akdemir, B., Altekin, R. E., Kucuk, M., et al. (2013). The significance of the left atrial volume index in cardioversion success and its relationship with recurrence in patients with non-valvular atrial fibrillation subjected to electrical cardioversion: a study on diagnostic accuracy. The Anatolian Journal of Cardiology, 13, 18–25.

    Google Scholar 

  18. Melduni, R. M., & Cullen, M. W. (2012). Role of left ventricular diastolic dysfunction in predicting atrial fibrillation recurrence after successful electrical cardioversion. Journal of Atrial Fibrillation, 5, 87–94.

    PubMed  Google Scholar 

  19. Marchese, P., Bursi, F., Delle Donne, G., et al. (2011). Indexed left atrial volume predicts the recurrence of non-valvular atrial fibrillation after successful cardioversion. European Journal of Echocardiography: The Journal of the Working Group on Echocardiography of the European Society of Cardiology, 12, 214–221.

    Article  Google Scholar 

  20. Celebi, O. O., Celebi, S., Canbay, A., Ergun, G., Aydogdu, S., & Diker, E. (2011). The effect of sinus rhythm restoration on high-sensitivity C-reactive protein levels and their association with long-term atrial fibrillation recurrence after electrical cardioversion. Cardiology, 118, 168–174.

    Article  PubMed  CAS  Google Scholar 

  21. Wazni, O., Martin, D. O., Marrouche, N. F., et al. (2005). Creactive protein concentration and recurrence of atrial fibrillation after electrical cardioversion. Heart, 91, 1303–1305.

    Article  PubMed  CAS  Google Scholar 

  22. Okumura, Y., Watanabe, I., Nakai, T., et al. (2011). Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. Journal of Cardiovascular Electrophysiology, 22, 987–993.

    Article  PubMed  Google Scholar 

  23. Kato, K., Fujimaki, T., Yoshida, T., et al. (2009). Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electrical cardioversion in patients with atrial fibrillation. Europace, 11, 332–337.

    Article  PubMed  Google Scholar 

  24. Zile, M. R., Desantis, S. M., Baicu, C. F., et al. (2011). Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circulation Heart Failure, 4, 246–256.

    Article  PubMed  CAS  Google Scholar 

  25. Loricchio, M. L., Cianfrocca, C., Pasceri, V., et al. (2007). Relation of C-reactive protein to long-term risk of recurrence of atrial fibrillation after electrical cardioversion. The American Journal of Cardiology, 99, 1421–1424.

    Article  PubMed  CAS  Google Scholar 

  26. Tveit, A., Seljeflot, I., Grundvold, I., Abdelnoor, M., Smith, P., & Arnesen, H. (2007). Effect of candesartan and various inflammatory markers on maintenance of sinus rhythm after electrical cardioversion for atrial fibrillation. The American Journal of Cardiology, 99, 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  27. Maggioni, A. P., Latini, R., Carson, P. E., et al. (2005). Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). American Heart Journal, 149, 548–557.

    Article  PubMed  CAS  Google Scholar 

  28. Fragakis, N., Shakespeare, C. F., Lloyd, G., et al. (2002). Reversion and maintenance of sinus rhythm in patients with permanent atrial fibrillation by internal cardioversion followed by biatrial pacing. Pacing and Clinical Electrophysiology, 25, 278–286.

    Article  PubMed  Google Scholar 

  29. Goette, A., Hoffmanns, P., Enayati, W., Meltendorf, U., Geller, J. C., & Klein, H. U. (2001). Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. The American Journal of Cardiology, 88, 906–909. A908.

    Article  PubMed  CAS  Google Scholar 

  30. Rashba, E. J., Bouhouch, R., Koshy, S., et al. (2001). A new algorithm for transthoracic cardioversion of atrial fibrillation based on body weight. The American Journal of Cardiology, 88, 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  31. Yu, W. C., Lee, S. H., Tai, C. T., et al. (1999). Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovascular Research, 42, 470–476.

    Article  PubMed  CAS  Google Scholar 

  32. Nattel, S., Li, D., & Yue, L. (2000). Basic mechanisms of atrial fibrillation—very new insights into very old ideas. Annual Review of Physiology, 62, 51–77.

    Article  PubMed  CAS  Google Scholar 

  33. Kumagai, K., Nakashima, H., Urata, H., Gondo, N., Arakawa, K., & Saku, K. (2003). Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. Journal of the American College of Cardiology, 41, 2197–2204.

    Article  PubMed  CAS  Google Scholar 

  34. Lin, C. S., & Pan, C. H. (2008). Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation. Cellular and Molecular Life Sciences CMLS, 65, 1489–1508.

    Article  PubMed  CAS  Google Scholar 

  35. Neuberger, H. R., Schotten, U., Blaauw, Y., et al. (2006). Chronic atrial dilation, electrical remodeling, and atrial fibrillation in the goat. Journal of the American College of Cardiology, 47, 644–653.

    Article  PubMed  Google Scholar 

  36. Tsang, T. S., Barnes, M. E., Bailey, K. R., et al. (2001). Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clinic Proceedings, 76, 467–475.

    Article  PubMed  CAS  Google Scholar 

  37. Bender, R., & Lange, S. (2001). Adjusting for multiple testing—when and how? Journal of Clinical Epidemiology, 54, 343–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding Source(s)

This work was performed as part of the Tourville Arrhythmia Center and was supported by the National Institute of Health grants HL057952, HL059165, HL095608, a Merit Award from the Veterans’ Affairs Health Administration, and a philanthropic contribution from Robert and Molly Tarr Foundation to the Division of Cardiology, Medical University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Mukherjee.

Additional information

Clinical Significance

Atrial fibrillation (AF), which is associated with enlargement of the left atrium and remodeling of the extracellular matrix within the atrial myocardium, can recur in almost 50 % of patients within 3–6 months following electrical cardioversion. This study provides proof of concept that a panel of biomarkers comprising of proteins key to extracellular matrix remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) may be used to prognosticate postcardioversion AF recurrence independent of changes in the left atrial volume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, R., Akar, J.G., Wharton, J.M. et al. Plasma Profiles of Matrix Metalloproteinases and Tissue Inhibitors of the Metalloproteinases Predict Recurrence of Atrial Fibrillation Following Cardioversion. J. of Cardiovasc. Trans. Res. 6, 528–535 (2013). https://doi.org/10.1007/s12265-013-9471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9471-2

Keywords

Navigation