Skip to main content

Advertisement

Log in

Macrophages Transmit Potent Proangiogenic Effects of oxLDL In Vitro and In Vivo Involving HIF-1α Activation: a Novel Aspect of Angiogenesis in Atherosclerosis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Neovascularization has been linked to the progression and vulnerability of atherosclerotic lesions. Angiogenesis is increased in lipid-rich plaque. Hypoxia-inducible factor alpha (HIF-1α) is a key transcriptional regulator responding to hypoxia and activating genes, which promote angiogenesis, among them vascular endothelial growth factor (VEGF). Oxidized low-density lipoprotein (oxLDL) is generated in lipid-rich plaque by oxidative stress. It triggers an inflammatory response and was traditionally thought to inhibit endothelial cells. New data, however, suggest that oxLDL can activate HIF-1α in monocytes in a hypoxia-independent fashion. We hypothesized that HIF-1α activation in monocyte–macrophages could transmit proangiogenic effects of oxLDL linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. First, we examined the effect of oxLDL on HIF-1α and VEGF expression in monocyte–macrophages and on their proangiogenic effect on endothelial cells in vitro in a monocyte–macrophage/endothelial co-culture model. OxLDL strongly induced HIF-1α and VEGF in monocyte–macrophages and significantly increased tube formation in co-cultured endothelial cells. HIF-1α inhibition reversed this effect. Second, we demonstrated a direct proangiogenic effect of oxLDL in an in vivo angiogenesis assay. Again, HIF-1α inhibition abrogated the proangiogenic effect of oxLDL. Third, in a rabbit atherosclerosis model, we studied the effect of dietary lipid lowering on arterial HIF-1α and VEGF expression. The administration of low-lipid diet significantly reduced the expression of both HIF-1α and VEGF, resulting in decreased plaque neovascularization. Our data point to oxLDL as a proangiogenic agent linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. This effect is dependent on macrophages and, at least in part, on the induction of the HIF-1α pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burke, A. P., Farb, A., Malcom, G. T., Liang, Y. H., Smialek, J., & Virmani, R. (1997). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. The New England Journal of Medicine, 336(18), 1276–1282. doi:10.1056/NEJM199705013361802.

    Article  PubMed  CAS  Google Scholar 

  2. Michel, J. B., Virmani, R., Arbustini, E., & Pasterkamp, G. (2011). Intraplaque haemorrhages as the trigger of plaque vulnerability. European Heart Journal, 32(16), 1977–1985. doi:10.1093/eurheartj/ehr054. 1985a, 1985b, 1985c.

    Article  PubMed  Google Scholar 

  3. Moreno, P. R., Purushothaman, K. R., Sirol, M., Levy, A. P., & Fuster, V. (2006). Neovascularization in human atherosclerosis. Circulation, 113(18), 2245–2252. doi:10.1161/CIRCULATIONAHA.105.578955.

    Article  PubMed  Google Scholar 

  4. Moreno, P. R., Sanz, J., & Fuster, V. (2009). Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. Journal of the American College of Cardiology, 53(25), 2315–2323. doi:10.1016/j.jacc.2009.02.057.

    Article  PubMed  CAS  Google Scholar 

  5. Moulton, K. S., Vakili, K., Zurakowski, D., Soliman, M., Butterfield, C., Sylvin, E., et al. (2003). Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4736–4741. doi:10.1073/pnas.0730843100.

    Article  PubMed  CAS  Google Scholar 

  6. Groszek, E., & Grundy, S. M. (1980). The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. Journal of Chronic Diseases, 33(11–12), 679–684.

    Article  PubMed  CAS  Google Scholar 

  7. Hutter, R., Valdiviezo, C., Sauter, B. V., Savontaus, M., Chereshnev, I., Carrick, F. E., et al. (2004). Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation, 109(16), 2001–2008. doi:10.1161/01.CIR.0000125526.91945.AE.

    Article  PubMed  CAS  Google Scholar 

  8. Palinski, W., Rosenfeld, M. E., Yla-Herttuala, S., Gurtner, G. C., Socher, S. S., Butler, S. W., et al. (1989). Low density lipoprotein undergoes oxidative modification in vivo. Proceedings of the National Academy of Sciences of the United States of America, 86(4), 1372–1376.

    Article  PubMed  CAS  Google Scholar 

  9. Parthasarathy, S., Quinn, M. T., Schwenke, D. C., Carew, T. E., & Steinberg, D. (1989). Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis, 9(3), 398–404.

    Article  PubMed  CAS  Google Scholar 

  10. Yla-Herttuala, S., Palinski, W., Rosenfeld, M. E., Parthasarathy, S., Carew, T. E., Butler, S., et al. (1989). Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. The Journal of Clinical Investigation, 84(4), 1086–1095. doi:10.1172/JCI114271.

    Article  PubMed  CAS  Google Scholar 

  11. Vink, A., Schoneveld, A. H., Lamers, D., Houben, A. J., van der Groep, P., van Diest, P. J., et al. (2007). HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis, 195(2), e69–75. doi:10.1016/j.atherosclerosis.2007.05.026.

    Article  PubMed  CAS  Google Scholar 

  12. Sluimer, J. C., Gasc, J. M., van Wanroij, J. L., Kisters, N., Groeneweg, M., Sollewijn Gelpke, M. D., et al. (2008). Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. Journal of the American College of Cardiology, 51(13), 1258–1265. doi:10.1016/j.jacc.2007.12.025.

    Article  PubMed  CAS  Google Scholar 

  13. Kai, H., Kuwahara, F., Tokuda, K., Shibata, R., Kusaba, K., Niiyama, H., et al. (2002). Coexistence of hypercholesterolemia and hypertension impairs adventitial vascularization. Hypertension, 39(2 Pt 2), 455–459.

    Article  PubMed  CAS  Google Scholar 

  14. Karshovska, E., Zernecke, A., Sevilmis, G., Millet, A., Hristov, M., Cohen, C. D., et al. (2007). Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2540–2547. doi:10.1161/ATVBAHA.107.151050.

    Article  PubMed  CAS  Google Scholar 

  15. Higashida, T., Kanno, H., Nakano, M., Funakoshi, K., & Yamamoto, I. (2008). Expression of hypoxia-inducible angiogenic proteins (hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and E26 transformation-specific-1) and plaque hemorrhage in human carotid atherosclerosis. Journal of Neurosurgery, 109(1), 83–91. doi:10.3171/JNS/2008/109/7/0083.

    Article  PubMed  CAS  Google Scholar 

  16. Mayr, M., Sidibe, A., & Zampetaki, A. (2008). The paradox of hypoxic and oxidative stress in atherosclerosis. Journal of the American College of Cardiology, 51(13), 1266–1267. doi:10.1016/j.jacc.2008.01.005.

    Article  PubMed  Google Scholar 

  17. Bosco, M. C., Puppo, M., Blengio, F., Fraone, T., Cappello, P., Giovarelli, M., et al. (2008). Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology, 213(9–10), 733–749. doi:10.1016/j.imbio.2008.07.031.

    Article  PubMed  CAS  Google Scholar 

  18. Deguchi, J. O., Yamazaki, H., Aikawa, E., & Aikawa, M. (2009). Chronic hypoxia activates the Akt and beta-catenin pathways in human macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(10), 1664–1670. doi:10.1161/ATVBAHA.109.194043.

    Article  PubMed  CAS  Google Scholar 

  19. Elbarghati, L., Murdoch, C., & Lewis, C. E. (2008). Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology, 213(9–10), 899–908. doi:10.1016/j.imbio.2008.07.016.

    Article  PubMed  CAS  Google Scholar 

  20. Poitz, D. M., Augstein, A., Weinert, S., Braun-Dullaeus, R. C., Strasser, R. H., & Schmeisser, A. (2011). OxLDL and macrophage survival: essential and oxygen-independent involvement of the Hif-pathway. Basic Research in Cardiology, 106(5), 761–772. doi:10.1007/s00395-011-0186-8.

    Article  PubMed  CAS  Google Scholar 

  21. Ribatti, D., Levi-Schaffer, F., & Kovanen, P. T. (2008). Inflammatory angiogenesis in atherogenesis—a double-edged sword. Annals of Medicine, 40(8), 606–621. doi:10.1080/07853890802186913.

    Article  PubMed  CAS  Google Scholar 

  22. West, X. Z., Malinin, N. L., Merkulova, A. A., Tischenko, M., Kerr, B. A., Borden, E. C., et al. (2010). Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature, 467(7318), 972–976. doi:10.1038/nature09421.

    Article  PubMed  CAS  Google Scholar 

  23. Yu, S., Wong, S. L., Lau, C. W., Huang, Y., & Yu, C. M. (2011). Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells. Biochemical and Biophysical Research Communications, 407(1), 44–48. doi:10.1016/j.bbrc.2011.02.096.

    Article  PubMed  CAS  Google Scholar 

  24. Shatrov, V. A., Sumbayev, V. V., Zhou, J., & Brune, B. (2003). Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanisms. Blood, 101(12), 4847–4849. doi:10.1182/blood-2002-09-2711.

    Article  PubMed  CAS  Google Scholar 

  25. Kessler J, Hahnel A, Wichmann H, Rot S, Kappler M, Bache M, Vordermark D (2010) HIF-1alpha inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression. BMC cancer 10:605. doi:10.1186/1471-2407-10-605

  26. Bouvard, C., De Arcangelis, A., Dizier, B., Galy-Fauroux, I., Fischer, A. M., Georges-Labouesse, E., et al. (2012). Tie2-dependent knockout of alpha6 integrin subunit in mice reduces post-ischaemic angiogenesis. Cardiovascular Research. doi:10.1093/cvr/cvs153.

    PubMed  Google Scholar 

  27. Corti, R., Osende, J. I., Fallon, J. T., Fuster, V., Mizsei, G., Jneid, H., et al. (2004). The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. Journal of the American College of Cardiology, 43(3), 464–473. doi:10.1016/j.jacc.2003.08.048.

    Article  PubMed  CAS  Google Scholar 

  28. Giannarelli, C., Cimmino, G., Connolly, T. M., Ibanez, B., Ruiz, J. M., Alique, M., et al. (2012). Synergistic effect of liver X receptor activation and simvastatin on plaque regression and stabilization: an magnetic resonance imaging study in a model of advanced atherosclerosis. European Heart Journal, 33(2), 264–273. doi:10.1093/eurheartj/ehr136.

    Article  PubMed  CAS  Google Scholar 

  29. Lewis, C., & Murdoch, C. (2005). Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. The American Journal of Pathology, 167(3), 627–635. doi:10.1016/S0002-9440(10)62038-X.

    Article  PubMed  CAS  Google Scholar 

  30. Chavakis, E., Dernbach, E., Hermann, C., Mondorf, U. F., Zeiher, A. M., & Dimmeler, S. (2001). Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation, 103(16), 2102–2107.

    Article  PubMed  CAS  Google Scholar 

  31. Wu, Y., Wang, Q., Cheng, L., Wang, J., & Lu, G. (2009). Effect of oxidized low-density lipoprotein on survival and function of endothelial progenitor cell mediated by p38 signal pathway. Journal of Cardiovascular Pharmacology, 53(2), 151–156. doi:10.1097/FJC.0b013e318197c637.

    Article  PubMed  CAS  Google Scholar 

  32. Haddad, P., Dussault, S., Groleau, J., Turgeon, J., Maingrette, F., & Rivard, A. (2011). Nox2-derived reactive oxygen species contribute to hypercholesterolemia-induced inhibition of neovascularization: effects on endothelial progenitor cells and mature endothelial cells. Atherosclerosis, 217(2), 340–349. doi:10.1016/j.atherosclerosis.2011.03.038.

    Article  PubMed  CAS  Google Scholar 

  33. Squadrito, M. L., & De Palma, M. (2011). Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Molecular Aspects of Medicine, 32(2), 123–145. doi:10.1016/j.mam.2011.04.005.

    Article  PubMed  CAS  Google Scholar 

  34. Casazza, A., Fu, X., Johansson, I., Capparuccia, L., Andersson, F., Giustacchini, A., et al. (2011). Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(4), 741–749. doi:10.1161/ATVBAHA.110.211920.

    Article  PubMed  CAS  Google Scholar 

  35. Baer, C., Squadrito, M. L., Iruela-Arispe, M. L., & De Palma, M. (2013). Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Experimental Cell Research. doi:10.1016/j.yexcr.2013.03.026.

    PubMed  Google Scholar 

  36. Khaidakov, M., Mitra, S., Wang, X., Ding, Z., Bora, N., Lyzogubov, V., et al. (2012). Large impact of low concentration oxidized LDL on angiogenic potential of human endothelial cells: a microarray study. PloS One, 7(10), e47421. doi:10.1371/journal.pone.0047421.

    Article  PubMed  CAS  Google Scholar 

  37. Norrby, K. (2006). In vivo models of angiogenesis. Journal of Cellular and Molecular Medicine, 10(3), 588–612.

    Article  PubMed  CAS  Google Scholar 

  38. Jeanpierre, E., Le Tourneau, T., Six, I., Zawadzki, C., Van Belle, E., Ezekowitz, M. D., et al. (2003). Dietary lipid lowering modifies plaque phenotype in rabbit atheroma after angioplasty: a potential role of tissue factor. Circulation, 108(14), 1740–1745. doi:10.1161/01.CIR.0000089370.84709.51.

    Article  PubMed  CAS  Google Scholar 

  39. Srimahachota, S., Wunsuwan, R., Siritantikorn, A., Boonla, C., Chaiwongkarjohn, S., & Tosukhowong, P. (2010). Effects of lifestyle modification on oxidized LDL, reactive oxygen species production and endothelial cell viability in patients with coronary artery disease. Clinical Biochemistry, 43(10–11), 858–862. doi:10.1016/j.clinbiochem.2010.04.056.

    Article  PubMed  CAS  Google Scholar 

  40. Tonstad, S., Sundfor, T., & Seljeflot, I. (2005). Effect of lifestyle changes on atherogenic lipids and endothelial cell adhesion molecules in young adults with familial premature coronary heart disease. The American Journal of Cardiology, 95(10), 1187–1191. doi:10.1016/j.amjcard.2005.01.047.

    Article  PubMed  CAS  Google Scholar 

  41. Verhamme, P., Quarck, R., Hao, H., Knaapen, M., Dymarkowski, S., Bernar, H., et al. (2002). Dietary cholesterol withdrawal reduces vascular inflammation and induces coronary plaque stabilization in miniature pigs. Cardiovascular Research, 56(1), 135–144.

    Article  PubMed  CAS  Google Scholar 

  42. Inoue, T., Hayashi, M., Takayanagi, K., & Morooka, S. (2002). Lipid-lowering therapy with fluvastatin inhibits oxidative modification of low density lipoprotein and improves vascular endothelial function in hypercholesterolemic patients. Atherosclerosis, 160(2), 369–376.

    Article  PubMed  CAS  Google Scholar 

  43. Inoue, T., Yaguchi, I., Uchida, T., Kamishirado, H., Nakahara, S., Hayashi, T., et al. (2002). Clinical significance of the antibody against oxidized low-density lipoprotein in acute myocardial infarction. Cardiology, 98(1–2), 13–17.

    Article  PubMed  CAS  Google Scholar 

  44. Shimada, K., Mokuno, H., Matsunaga, E., Miyazaki, T., Sumiyoshi, K., Kume, A., et al. (2004). Predictive value of circulating oxidized LDL for cardiac events in type 2 diabetic patients with coronary artery disease. Diabetes Care, 27(3), 843–844.

    Article  PubMed  CAS  Google Scholar 

  45. Shimada, K., Mokuno, H., Matsunaga, E., Miyazaki, T., Sumiyoshi, K., Miyauchi, K., et al. (2004). Circulating oxidized low-density lipoprotein is an independent predictor for cardiac event in patients with coronary artery disease. Atherosclerosis, 174(2), 343–347. doi:10.1016/j.atherosclerosis.2004.01.029.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Renata Hutter for her continued support.

Funding

This study was supported by NIH-Training Grant 5 T32 HL 7824-13 to Randolph Hutter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph Hutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutter, R., Speidl, W.S., Valdiviezo, C. et al. Macrophages Transmit Potent Proangiogenic Effects of oxLDL In Vitro and In Vivo Involving HIF-1α Activation: a Novel Aspect of Angiogenesis in Atherosclerosis. J. of Cardiovasc. Trans. Res. 6, 558–569 (2013). https://doi.org/10.1007/s12265-013-9469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9469-9

Keywords

Navigation