Advertisement

MicroRNAs as Biomarkers for Ischemic Heart Disease

Article

Abstract

MicroRNAs (miRs) are short, noncoding RNAs that function as posttranscriptional inhibitors of mRNA translation to protein. They are essential for normal development and homeostasis. Dysregulated expression patterns both cause and result from disease states. Generally studied as intracellular mediators, miRs can be isolated from body fluids and exhibit remarkable stability to degradation. These features, in combination with their tissue specificity, make miRs attractive candidates as blood-derived biomarkers for coronary artery disease (CAD), the most frequent cause of death worldwide. The use of miRs as biomarkers in both symptomatic and asymptomatic CAD and the influence of conventional cardiovascular risk factors and CAD treatment on their circulating levels are the topics of this review. To conclude, it highlights the remaining hurdles to tackle before this promising application of miRs can enter into routine clinical practice.

Keywords

MicroRNA Coronary artery disease Biological markers Myocardial infarction Heart failure 

Notes

Acknowledgments

The authors thank Ward Heggermont, MD, for critical revision of this manuscript. L.N.L. Van Aelst is supported by research grants from the Research Foundation Flanders, Belgium (FWO-Vlaanderen 1167610N and 1167612N). S. Heymans is supported by the Netherlands Organization for Scientific Research (Vidi Grant 91796338), the Netherlands Heart Foundation (2008B011), the Research Foundation Flanders, Belgium (FWO-Vlaanderen 1183211N, FWO G074009N), and the European Union (FP7-HEALTH-2010, MEDIA; FP7-HEALTH-2011, EU MASCARA; FP7-MC-IAPP-2011, Marie-Curie-IAPP-CardiomiR; FP7-HEALTH-2012-HOMAGE). We acknowledge the support from the Netherlands Cardiovascular Research Initiative: the Dutch Heart Foundation, the Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences (CVON 2011-11 ARENA).

Conflict of Interest

None.

References

  1. 1.
    Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRefGoogle Scholar
  2. 2.
    Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiology, 6(6), 419–429. doi: 10.1038/nrcardio.2009.56.PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O’Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518. doi: 10.1073/pnas.0804549105.PubMedCrossRefGoogle Scholar
  4. 4.
    Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., Borger, M. A., Di Mario, C., Dickstein, K., Ducrocq, G., Fernandez-Aviles, F., Gershlick, A. H., Giannuzzi, P., Halvorsen, S., Huber, K., Juni, P., Kastrati, A., Knuuti, J., Lenzen, M. J., Mahaffey, K. W., Valgimigli, M., Van’t Hof, A., Widimsky, P., & Zahger, D. (2012). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 33(20), 2569–2619. doi: 10.1093/eurheartj/ehs215.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamm, C. W., Bassand, J. P., Agewall, S., Bax, J., Boersma, E., Bueno, H., Caso, P., Dudek, D., Gielen, S., Huber, K., Ohman, M., Petrie, M. C., Sonntag, F., Uva, M. S., Storey, R. F., Wijns, W., Zahger, D., Bax, J. J., Auricchio, A., Baumgartner, H., Ceconi, C., Dean, V., Deaton, C., Fagard, R., Funck-Brentano, C., Hasdai, D., Hoes, A., Knuuti, J., Kolh, P., McDonagh, T., Moulin, C., Poldermans, D., Popescu, B. A., Reiner, Z., Sechtem, U., Sirnes, P. A., Torbicki, A., Vahanian, A., Windecker, S., Achenbach, S., Badimon, L., Bertrand, M., Botker, H. E., Collet, J. P., Crea, F., Danchin, N., Falk, E., Goudevenos, J., Gulba, D., Hambrecht, R., Herrmann, J., Kastrati, A., Kjeldsen, K., Kristensen, S. D., Lancellotti, P., Mehilli, J., Merkely, B., Montalescot, G., Neumann, F. J., Neyses, L., Perk, J., Roffi, M., Romeo, F., Ruda, M., Swahn, E., Valgimigli, M., Vrints, C. J., & Widimsky, P. (2011). ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 32(23), 2999–3054. doi: 10.1093/eurheartj/ehr236.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Gara, P. T., Kushner, F. G., Ascheim, D. D., Casey, D. E., Jr., Chung, M. K., de Lemos, J. A., Ettinger, S. M., Fang, J. C., Fesmire, F. M., Franklin, B. A., Granger, C. B., Krumholz, H. M., Linderbaum, J. A., Morrow, D. A., Newby, L. K., Ornato, J. P., Ou, N., Radford, M. J., Tamis-Holland, J. E., Tommaso, C. L., Tracy, C. M., Woo, Y. J., & Zhao, D. X. (2012). 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. doi: 10.1016/j.jacc.2012.11.019.Google Scholar
  7. 7.
    Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D., Katus, H. A., Lindahl, B., Morrow, D. A., Clemmensen, P. M., Johanson, P., Hod, H., Underwood, R., Bax, J. J., Bonow, R. O., Pinto, F., Gibbons, R. J., Fox, K. A., Atar, D., Newby, L. K., Galvani, M., Hamm, C. W., Uretsky, B. F., Steg, P. G., Wijns, W., Bassand, J. P., Menasche, P., Ravkilde, J., Ohman, E. M., Antman, E. M., Wallentin, L. C., Armstrong, P. W., Januzzi, J. L., Nieminen, M. S., Gheorghiade, M., Filippatos, G., Luepker, R. V., Fortmann, S. P., Rosamond, W. D., Levy, D., Wood, D., Smith, S. C., Hu, D., Lopez-Sendon, J. L., Robertson, R. M., Weaver, D., Tendera, M., Bove, A. A., Parkhomenko, A. N., Vasilieva, E. J., & Mendis, S. (2012). Third universal definition of myocardial infarction. Circulation, 126(16), 2020–2035. doi: 10.1161/CIR.0b013e31826e1058.PubMedCrossRefGoogle Scholar
  8. 8.
    Thygesen, K., Mair, J., Giannitsis, E., Mueller, C., Lindahl, B., Blankenberg, S., Huber, K., Plebani, M., Biasucci, L. M., Tubaro, M., Collinson, P., Venge, P., Hasin, Y., Galvani, M., Koenig, W., Hamm, C., Alpert, J. S., Katus, H., & Jaffe, A. S. (2012). How to use high-sensitivity cardiac troponins in acute cardiac care. European Heart Journal, 33(18), 2252–2257. doi: 10.1093/eurheartj/ehs154.PubMedCrossRefGoogle Scholar
  9. 9.
    Libby, P., & Braunwald, E. (2008). Braunwald’s heart disease: A textbook of cardiovascular medicine (8th ed.). Philadelphia: Saunders/Elsevier.Google Scholar
  10. 10.
    McMurray, J. J., Adamopoulos, S., Anker, S. D., Auricchio, A., Bohm, M., Dickstein, K., Falk, V., Filippatos, G., Fonseca, C., Gomez-Sanchez, M. A., Jaarsma, T., Kober, L., Lip, G. Y., Maggioni, A. P., Parkhomenko, A., Pieske, B. M., Popescu, B. A., Ronnevik, P. K., Rutten, F. H., Schwitter, J., Seferovic, P., Stepinska, J., Trindade, P. T., Voors, A. A., Zannad, F., Zeiher, A., Bax, J. J., Baumgartner, H., Ceconi, C., Dean, V., Deaton, C., Fagard, R., Funck-Brentano, C., Hasdai, D., Hoes, A., Kirchhof, P., Knuuti, J., Kolh, P., McDonagh, T., Moulin, C., Reiner, Z., Sechtem, U., Sirnes, P. A., Tendera, M., Torbicki, A., Vahanian, A., Windecker, S., Bonet, L. A., Avraamides, P., Ben Lamin, H. A., Brignole, M., Coca, A., Cowburn, P., Dargie, H., Elliott, P., Flachskampf, F. A., Guida, G. F., Hardman, S., Iung, B., Merkely, B., Mueller, C., Nanas, J. N., Nielsen, O. W., Orn, S., Parissis, J. T., & Ponikowski, P. (2012). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 14(8), 803–869. doi: 10.1093/eurjhf/hfs105.PubMedCrossRefGoogle Scholar
  11. 11.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., & Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 5003–5008. doi: 10.1073/pnas.1019055108.PubMedCrossRefGoogle Scholar
  12. 12.
    Mause, S. F., & Weber, C. (2010). Microparticles: Protagonists of a novel communication network for intercellular information exchange. Circulation Research, 107(9), 1047–1057. doi: 10.1161/CIRCRESAHA.110.226456.PubMedCrossRefGoogle Scholar
  13. 13.
    Fevrier, B., & Raposo, G. (2004). Exosomes: Endosomal-derived vesicles shipping extracellular messages. Current Opinion in Cell Biology, 16(4), 415–421. doi: 10.1016/j.ceb.2004.06.003.PubMedCrossRefGoogle Scholar
  14. 14.
    Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. doi: 10.1038/ncb1596.PubMedCrossRefGoogle Scholar
  15. 15.
    Collino, F., Deregibus, M. C., Bruno, S., Sterpone, L., Aghemo, G., Viltono, L., Tetta, C., & Camussi, G. (2010). Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One, 5(7), e11803. doi: 10.1371/journal.pone.0011803.PubMedCrossRefGoogle Scholar
  16. 16.
    Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4), 423–433. doi: 10.1038/ncb2210.PubMedCrossRefGoogle Scholar
  17. 17.
    Turchinovich, A., Weiz, L., Langheinz, A., & Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Research, 39(16), 7223–7233. doi: 10.1093/nar/gkr254.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, K., Zhang, S., Weber, J., Baxter, D., & Galas, D. J. (2010). Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Research, 38(20), 7248–7259. doi: 10.1093/nar/gkq601.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, G. K., Zhu, J. Q., Zhang, J. T., Li, Q., Li, Y., He, J., Qin, Y. W., & Jing, Q. (2010). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31(6), 659–666. doi: 10.1093/eurheartj/ehq013.PubMedCrossRefGoogle Scholar
  20. 20.
    Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., Li, K., Yu, B., Li, Z., Wang, R., Wang, L., Li, Q., Wang, N., Shan, H., & Yang, B. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications, 391(1), 73–77. doi: 10.1016/j.bbrc.2009.11.005.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Baba, O., Kojima, Y., Shizuta, S., Imai, M., Tamura, T., Kita, T., & Kimura, T. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation Cardiovascular Genetics, 4(4), 446–454. doi: 10.1161/CIRCGENETICS.110.958975.PubMedCrossRefGoogle Scholar
  22. 22.
    Bernal-Mizrachi, L., Jy, W., Jimenez, J. J., Pastor, J., Mauro, L. M., Horstman, L. L., de Marchena, E., & Ahn, Y. S. (2003). High levels of circulating endothelial microparticles in patients with acute coronary syndromes. American Heart Journal, 145(6), 962–970. doi: 10.1016/S0002-8703(03)00103-0.PubMedCrossRefGoogle Scholar
  23. 23.
    Mallat, Z., Benamer, H., Hugel, B., Benessiano, J., Steg, P. G., Freyssinet, J. M., & Tedgui, A. (2000). Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation, 101(8), 841–843.PubMedCrossRefGoogle Scholar
  24. 24.
    Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Koppel, T., Jahantigh, M. N., Lutgens, E., Wang, S., Olson, E. N., Schober, A., & Weber, C. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81. doi: 10.1126/scisignal.2000610.PubMedCrossRefGoogle Scholar
  25. 25.
    Bauersachs, J., & Thum, T. (2011). Biogenesis and regulation of cardiovascular microRNAs. Circulation Research, 109(3), 334–347. doi: 10.1161/CIRCRESAHA.110.228676.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436(7048), 214–220. doi: 10.1038/nature03817.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., & Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38(2), 228–233. doi: 10.1038/ng1725.PubMedCrossRefGoogle Scholar
  28. 28.
    Gladka, M. M., da Costa Martins, P. A., & De Windt, L. J. (2012). Small changes can make a big difference—MicroRNA regulation of cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 52(1), 74–82. doi: 10.1016/j.yjmcc.2011.09.015.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheng, Y., Tan, N., Yang, J., Liu, X., Cao, X., He, P., Dong, X., Qin, S., & Zhang, C. (2010). A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clinical Science (London, England), 119(2), 87–95. doi: 10.1042/CS20090645.CrossRefGoogle Scholar
  30. 30.
    D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., Rubino, M., Carena, M. C., Spazzafumo, L., De Simone, M., Micheli, B., Biglioli, P., Achilli, F., Martelli, F., Maggiolini, S., Marenzi, G., Pompilio, G., & Capogrossi, M. C. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31(22), 2765–2773. doi: 10.1093/eurheartj/ehq167.PubMedCrossRefGoogle Scholar
  31. 31.
    Gidlof, O., Andersson, P., van der Pals, J., Gotberg, M., & Erlinge, D. (2011). Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology, 118(4), 217–226. doi: 10.1159/000328869.PubMedCrossRefGoogle Scholar
  32. 32.
    Bostjancic, E., Zidar, N., Stajer, D., & Glavac, D. (2010). MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology, 115(3), 163–169. doi: 10.1159/000268088.PubMedCrossRefGoogle Scholar
  33. 33.
    Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Roxe, T., Muller-Ardogan, M., Bonauer, A., Zeiher, A. M., & Dimmeler, S. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107(5), 677–684. doi: 10.1161/CIRCRESAHA.109.215566.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, R., Li, N., Zhang, Y., Ran, Y., & Pu, J. (2011). Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine, 50(17), 1789–1795.PubMedCrossRefGoogle Scholar
  35. 35.
    Widera, C., Gupta, S. K., Lorenzen, J. M., Bang, C., Bauersachs, J., Bethmann, K., Kempf, T., Wollert, K. C., & Thum, T. (2011). Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology, 51(5), 872–875. doi: 10.1016/j.yjmcc.2011.07.011.PubMedCrossRefGoogle Scholar
  36. 36.
    De Rosa, S., Fichtlscherer, S., Lehmann, R., Assmus, B., Dimmeler, S., & Zeiher, A. M. (2011). Transcoronary concentration gradients of circulating microRNAs. Circulation, 124(18), 1936–1944. doi: 10.1161/CIRCULATIONAHA.111.037572.PubMedCrossRefGoogle Scholar
  37. 37.
    Olivieri, F., Antonicelli, R., Lorenzi, M., D’Alessandra, Y., Lazzarini, R., Santini, G., Spazzafumo, L., Lisa, R., La Sala, L., Galeazzi, R., Recchioni, R., Testa, R., Pompilio, G., Capogrossi, M. C., & Procopio, A. D. (2012). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology. doi: 10.1016/j.ijcard.2012.01.075.Google Scholar
  38. 38.
    Long, G., Wang, F., Duan, Q., Chen, F., Yang, S., Gong, W., Wang, Y., Chen, C., & Wang, D. W. (2012). Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. International Journal of Biological Sciences, 8(6), 811–818. doi: 10.7150/ijbs.4439.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, Y. Q., Zhang, M. F., Wen, H. Y., Hu, C. L., Liu, R., Wei, H. Y., Ai, C. M., Wang, G., Liao, X. X., & Li, X. (2013). Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (São Paulo, Brazil), 68(1), 75–80.CrossRefGoogle Scholar
  40. 40.
    Gidlof, O., Smith, J. G., Miyazu, K., Gilje, P., Spencer, A., Blomquist, S., & Erlinge, D. (2013). Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovascular Disorders, 13, 12. doi: 10.1186/1471-2261-13-12.PubMedCrossRefGoogle Scholar
  41. 41.
    Holland, R. P., & Brooks, H. (1976). The QRS complex during myocardial ischemia. An experimental analysis in the porcine heart. The Journal of Clinical Investigation, 57(3), 541–550. doi: 10.1172/JCI108309.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang, R., Niu, H., Ban, T., Xu, L., Li, Y., Wang, N., Sun, L., Ai, J., & Yang, B. (2012). Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. International Journal of Cardiology. doi: 10.1016/j.ijcard.2012.09.108.Google Scholar
  43. 43.
    Eitel, I., Adams, V., Dieterich, P., Fuernau, G., de Waha, S., Desch, S., Schuler, G., & Thiele, H. (2012). Relation of circulating microRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. American Heart Journal, 164(5), 706–714. doi: 10.1016/j.ahj.2012.08.004.PubMedCrossRefGoogle Scholar
  44. 44.
    van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579. doi: 10.1126/science.1139089.PubMedCrossRefGoogle Scholar
  45. 45.
    Corsten, M. F., Dennert, R., Jochems, S., Kuznetsova, T., Devaux, Y., Hofstra, L., Wagner, D. R., Staessen, J. A., Heymans, S., & Schroen, B. (2010). Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation Cardiovascular Genetics, 3(6), 499–506. doi: 10.1161/CIRCGENETICS.110.957415.PubMedCrossRefGoogle Scholar
  46. 46.
    D’Alessandra, Y., Pompilio, G., & Capogrossi, M. C. (2011). Letter by D’Alessandra et al. regarding article, “Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease”. Circulation Cardiovascular Genetics, 4(1), e7–e8. doi: 10.1161/CIRCGENETICS.110.958769.PubMedCrossRefGoogle Scholar
  47. 47.
    Olivieri, F., Antonicelli, R., Capogrossi, M. C., & Procopio, A. D. (2012). Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: An exciting challenge. International Journal of Cardiology. doi: 10.1016/j.ijcard.2012.11.103.Google Scholar
  48. 48.
    Devaux, Y., Vausort, M., Goretti, E., Nazarov, P. V., Azuaje, F., Gilson, G., Corsten, M. F., Schroen, B., Lair, M. L., Heymans, S., & Wagner, D. R. (2012). Use of circulating microRNAs to diagnose acute myocardial infarction. Clinical Chemistry, 58(3), 559–567. doi: 10.1373/clinchem.2011.173823.PubMedCrossRefGoogle Scholar
  49. 49.
    Bell, M. L., Buvoli, M., & Leinwand, L. A. (2010). Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Molecular and Cellular Biology, 30(8), 1937–1945. doi: 10.1128/MCB.01370-09.PubMedCrossRefGoogle Scholar
  50. 50.
    Adachi, T., Nakanishi, M., Otsuka, Y., Nishimura, K., Hirokawa, G., Goto, Y., Nonogi, H., & Iwai, N. (2010). Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clinical Chemistry, 56(7), 1183–1185. doi: 10.1373/clinchem.2010.144121.PubMedCrossRefGoogle Scholar
  51. 51.
    Sauermann, M., Sahin, O., Sultmann, H., Hahne, F., Blaszkiewicz, S., Majety, M., Zatloukal, K., Fuzesi, L., Poustka, A., Wiemann, S., & Arlt, D. (2008). Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells. Oncogene, 27(9), 1320–1326. doi: 10.1038/sj.onc.1210743.PubMedCrossRefGoogle Scholar
  52. 52.
    Patel, V., & Noureddine, L. (2012). MicroRNAs and fibrosis. Current Opinion in Nephrology and Hypertension, 21(4), 410–416. doi: 10.1097/MNH.0b013e328354e559.PubMedCrossRefGoogle Scholar
  53. 53.
    Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., & Engelhardt, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984. doi: 10.1038/nature07511.PubMedCrossRefGoogle Scholar
  54. 54.
    Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E., Shah, A., Willeit, J., & Mayr, M. (2010). Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation Research, 107(6), 810–817. doi: 10.1161/CIRCRESAHA.110.226357.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., Richardson, J. A., Bassel-Duby, R., & Olson, E. N. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15(2), 261–271. doi: 10.1016/j.devcel.2008.07.002.PubMedCrossRefGoogle Scholar
  56. 56.
    Nazari-Jahantigh, M., Wei, Y., & Schober, A. (2012). The role of microRNAs in arterial remodelling. Thrombosis and Haemostasis, 107(4), 611–618. doi: 10.1160/TH11-12-0826.PubMedCrossRefGoogle Scholar
  57. 57.
    Sun, X., Zhang, M., Sanagawa, A., Mori, C., Ito, S., Iwaki, S., Satoh, H., & Fujii, S. (2012). Circulating microRNA-126 in patients with coronary artery disease: Correlation with LDL cholesterol. Thrombosis Journal, 10(1), 16. doi: 10.1186/1477-9560-10-16.PubMedCrossRefGoogle Scholar
  58. 58.
    Zampetaki, A., Willeit, P., Tilling, L., Drozdov, I., Prokopi, M., Renard, J. M., Mayr, A., Weger, S., Schett, G., Shah, A., Boulanger, C. M., Willeit, J., Chowienczyk, P. J., Kiechl, S., & Mayr, M. (2012). Prospective study on circulating microRNAs and risk of myocardial infarction. Journal of the American College of Cardiology, 60(4), 290–299. doi: 10.1016/j.jacc.2012.03.056.PubMedCrossRefGoogle Scholar
  59. 59.
    Fukushima, Y., Nakanishi, M., Nonogi, H., Goto, Y., & Iwai, N. (2011). Assessment of plasma miRNAs in congestive heart failure. Circulation Journal, 75(2), 336–340.PubMedCrossRefGoogle Scholar
  60. 60.
    Faraoni, I., Antonetti, F. R., Cardone, J., & Bonmassar, E. (2009). miR-155 gene: A typical multifunctional microRNA. Biochimica et Biophysica Acta, 1792(6), 497–505. doi: 10.1016/j.bbadis.2009.02.013.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., & Baltimore, D. (2010). Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 10(2), 111–122. doi: 10.1038/nri2708.PubMedCrossRefGoogle Scholar
  62. 62.
    Matsumoto, S., Sakata, Y., Nakatani, D., Suna, S., Mizuno, H., Shimizu, M., Usami, M., Sasaki, T., Sato, H., Kawahara, Y., Hamasaki, T., Nanto, S., Hori, M., & Komuro, I. (2012). A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochemical and Biophysical Research Communications, 427(2), 280–284. doi: 10.1016/j.bbrc.2012.09.039.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnnidis, J. B., Harris, M. H., Wheeler, R. T., Stehling-Sun, S., Lam, M. H., Kirak, O., Brummelkamp, T. R., Fleming, M. D., & Camargo, F. D. (2008). Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 451(7182), 1125–1129. doi: 10.1038/nature06607.PubMedCrossRefGoogle Scholar
  64. 64.
    Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., Lee, T. H., Miano, J. M., Ivey, K. N., & Srivastava, D. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710. doi: 10.1038/nature08195.PubMedGoogle Scholar
  65. 65.
    Meder, B., Keller, A., Vogel, B., Haas, J., Sedaghat-Hamedani, F., Kayvanpour, E., Just, S., Borries, A., Rudloff, J., Leidinger, P., Meese, E., Katus, H. A., & Rottbauer, W. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106(1), 13–23. doi: 10.1007/s00395-010-0123-2.PubMedCrossRefGoogle Scholar
  66. 66.
    Long, G., Wang, F., Duan, Q., Yang, S., Chen, F., Gong, W., Yang, X., Wang, Y., Chen, C., & Wang, D. W. (2012). Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS One, 7(12), e50926. doi: 10.1371/journal.pone.0050926.PubMedCrossRefGoogle Scholar
  67. 67.
    Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., & Pinto, Y. M. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106(6), 1035–1039. doi: 10.1161/CIRCRESAHA.110.218297.PubMedCrossRefGoogle Scholar
  68. 68.
    Tutarel, O., Dangwal, S., Bretthauer, J., Westhoff-Bleck, M., Roentgen, P., Anker, S. D., Bauersachs, J., & Thum, T. (2011). Circulating miR-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. International Journal of Cardiology. doi: 10.1016/j.ijcard.2011.11.082.Google Scholar
  69. 69.
    Kumarswamy, R., Anker, S. D., & Thum, T. (2010). MicroRNAs as circulating biomarkers for heart failure: questions about MiR-423-5p. Circulation Research, 106(9), e8. doi: 10.1161/CIRCRESAHA.110.220616. author reply e9.PubMedCrossRefGoogle Scholar
  70. 70.
    Vogel, B., Keller, A., Frese, K. S., Kloos, W., Kayvanpour, E., Sedaghat-Hamedani, F., Hassel, S., Marquart, S., Beier, M., Giannitis, E., Hardt, S., Katus, H. A., & Meder, B. (2013). Refining diagnostic microRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clinical Chemistry, 59(2), 410–418. doi: 10.1373/clinchem.2011.181370.PubMedCrossRefGoogle Scholar
  71. 71.
    Devaux, Y., Vausort, M., McCann, G. P., Zangrando, J., Kelly, D., Razvi, N., Zhang, L., Ng, L. L., Wagner, D. R., & Squire, I. B. (2013). MicroRNA-150: A novel marker of left ventricular remodeling after acute myocardial infarction. Circulation Cardiovascular Genetics. doi: 10.1161/CIRCGENETICS.113.000077.PubMedGoogle Scholar
  72. 72.
    Hoekstra, M., van der Lans, C. A., Halvorsen, B., Gullestad, L., Kuiper, J., Aukrust, P., van Berkel, T. J., & Biessen, E. A. (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and Biophysical Research Communications, 394(3), 792–797. doi: 10.1016/j.bbrc.2010.03.075.PubMedCrossRefGoogle Scholar
  73. 73.
    Taurino, C., Miller, W. H., McBride, M. W., McClure, J. D., Khanin, R., Moreno, M. U., Dymott, J. A., Delles, C., & Dominiczak, A. F. (2010). Gene expression profiling in whole blood of patients with coronary artery disease. Clinical Science (London, England), 119(8), 335–343. doi: 10.1042/CS20100043.CrossRefGoogle Scholar
  74. 74.
    Morrow, D. A., & de Lemos, J. A. (2007). Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation, 115(8), 949–952. doi: 10.1161/CIRCULATIONAHA.106.683110.PubMedCrossRefGoogle Scholar
  75. 75.
    Fichtlscherer, S., Zeiher, A. M., & Dimmeler, S. (2011). Circulating microRNAs: Biomarkers or mediators of cardiovascular diseases? Arteriosclerosis Thrombosis and Vascular Biology, 31(11), 2383–2390. doi: 10.1161/ATVBAHA.111.226696.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Center for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
  2. 2.Department of CardiologyUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of CardiologyUniversity Hospital MaastrichtMaastrichtthe Netherlands
  4. 4.Interuniversity Cardiology Institute Netherlands (ICIN)Royal Netherlands Academy of Arts and SciencesUtrechtthe Netherlands
  5. 5.Center for Heart Failure ResearchCardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands

Personalised recommendations