Skip to main content
Log in

Evaluation of Right and Left Ventricular Diastolic Filling

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

A conceptual fluid–dynamics framework for diastolic filling is developed. The convective deceleration load (CDL) is identified as an important determinant of ventricular inflow during the E wave (A wave) upstroke. Convective deceleration occurs as blood moves from the inflow anulus through larger-area cross-sections toward the expanding walls. Chamber dilatation underlies previously unrecognized alterations in intraventricular flow dynamics. The larger the chamber, the larger becomes the endocardial surface and the CDL. CDL magnitude affects strongly the attainable E wave (A wave) peak. This underlies the concept of diastolic ventriculoannular disproportion. Large vortices, whose strength decreases with chamber dilatation, ensue after the E wave peak and impound inflow kinetic energy, averting an inflow-impeding, convective Bernoulli pressure rise. This reduces the CDL by a variable extent depending on vortical intensity. Accordingly, the filling vortex facilitates filling to varying degrees, depending on chamber volume. The new framework provides stimulus for functional genomics research, aimed at new insights into ventricular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pasipoularides, A. (2010). Heart’s vortex: Intracardiac blood flow phenomena (p. 960). Shelton: People’s Medical Publishing House.

    Google Scholar 

  2. Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Prog Cardiovasc Dis, 32, 291–318.

    Article  PubMed  CAS  Google Scholar 

  3. Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. [Review]. Journal of the American College of Cardiology, 15, 859–882.

    Article  PubMed  CAS  Google Scholar 

  4. Pasipoularides, A. (2012). Right and left ventricular diastolic flow field: why are measured intraventricular pressure gradients small? [Flujo diastólico ventricular derecho e izquierdo: ¿por qué son bajos los gradientes de presión intraventricular medidos?] Rev Esp Cardiol. 10.1016/j.recesp.2012.07.019

  5. Borlaug, B. A., & Redfield, M. M. (2011). Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation, 123, 2006–2013.

    Article  PubMed  Google Scholar 

  6. Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: Ejection begets filling. Diastolic functional aspects of HCM. [Progress in Cardiology]. American Heart Journal, 162, 798–810.

    Article  PubMed  Google Scholar 

  7. Tønnessen, T., & Knudsen, C. W. (2005). Surgical left ventricular remodelling in heart failure. European Journal of Heart Failure, 7, 704–709.

    Article  PubMed  Google Scholar 

  8. Isaaz, K., & Pasipoularides, A. (1991). Noninvasive assessment of intrinsic ventricular load dynamics in dilated cardiomyopathy. Journal of the American College of Cardiology, 17, 112–121.

    Article  PubMed  CAS  Google Scholar 

  9. Pasipoularides, A., Shu, M., Womack, M. S., Shah, A., von Ramm, O., & Glower, D. D. (2003). RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. American Journal of Physiology. Heart and Circulatory Physiology, 284, H56–H65.

    PubMed  CAS  Google Scholar 

  10. Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology. Heart and Circulatory Physiology, 284, H1064–H1072.

    PubMed  CAS  Google Scholar 

  11. Pasipoularides, A. D., Shu, M., Shah, A., & Glower, D. D. (2002). Right ventricular diastolic relaxation in conscious dog models of pressure overload, volume overload and ischemia. The Journal of Thoracic and Cardiovascular Surgery, 124, 964–972.

    Article  PubMed  Google Scholar 

  12. Pasipoularides, A. D., Shu, M., Shah, A., Silvestry, S., & Glower, D. D. (2002). Right ventricular diastolic function in canine models of pressure overload, volume overload and ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2140–H2150.

    PubMed  CAS  Google Scholar 

  13. Ihara, T., Shannon, R. P., Komamura, K., Pasipoularides, A., Patrick, T., Shen, Y. T., et al. (1994). Effects of anesthesia and recent surgery on diastolic function. Cardiovascular Research, 28, 325–336.

    Article  PubMed  CAS  Google Scholar 

  14. Condos, W. R. J., Latham, R. D., Hoadley, S. D., & Pasipoularides, A. (1987). Hemodynamics of the Mueller maneuver in man: Right and left heart micromanometry and Doppler echocardiography. Circulation, 76, 1020–1028.

    Article  PubMed  Google Scholar 

  15. Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: A comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–252.

    Article  PubMed  Google Scholar 

  16. Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Calculation of the time constant of relaxation. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–132). The Hague: Martinus Nijhoff.

    Chapter  Google Scholar 

  17. Zile, M. R., Tomita, M., Ishihara, K., Nakano, K., Lindroth, J., Spinale, F., et al. (1993). Changes in diastolic function LV volume overload produced by mitral regurgitation. Circulation, 87, 1378–1388.

    Article  PubMed  CAS  Google Scholar 

  18. Pacileo, G., Limongelli, G., Verrengia, M., Gimeno, J., Di Salvo, G., & Calabrò, R. (2004). Backscatter evaluation of myocardial functional and textural findings in children with right ventricular pressure and/or volume overload. The American Journal of Cardiology, 93, 594–597.

    Article  PubMed  Google Scholar 

  19. Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1956–H1968.

    PubMed  CAS  Google Scholar 

  20. Pasipoularides A. (2011). Analysis of vortex flow imaging in normal and dysfunctional RV’s. American Society of Echocardiography 22nd Annual Scientific Sessions, Montreal, EE02d - Flow Vortex Imaging; PROLibraries.com . http://www.prolibraries.com/ase/?select=session&sessionID=3049.

  21. Pasipoularides, A. (2008). Invited commentary: Functional imaging (FI) combines imaging datasets and computational fluid dynamics to simulate cardiac flows. Journal of Applied Physiology, 105, 1015.

    Article  PubMed  Google Scholar 

  22. Fredriksson, A. G., Zajac, J., Eriksson, J., Dyverfeldt, P., Bolger, A. F., Ebbers, T., et al. (2011). 4-D blood flow in the human right ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 301, H2344–H2350.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, X. F., Deng, Y. B., Nanda, N. C., Deng, J., Miller, A. R., & Xie, M. X. (2003). Live three-dimensional echocardiography: Imaging principles and clinical application. Echocardiography, 20, 593–604.

    Article  PubMed  Google Scholar 

  24. Inwood, S. (2003). The forgotten genius: The biography of Robert Hooke 1635–1703 (p. 105). San Francisco: MacAdam.

    Google Scholar 

  25. Pasipoularides, A. (2007). Complementarity and competitiveness of the intrinsic and extrinsic components of the total ventricular load: Demonstration after valve replacement in aortic stenosis [Editorial]. American Heart Journal, 153, 4–6.

    Article  PubMed  Google Scholar 

  26. Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circulation Research, 61, 220–227.

    Article  PubMed  CAS  Google Scholar 

  27. Georgiadis, J. G., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of left ventricular ejection. Annals of Biomedical Engineering, 20, 81–97.

    Article  PubMed  CAS  Google Scholar 

  28. Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. [Review]. Hellenic Journal of Cardiology, 52, 416–426.

    PubMed  Google Scholar 

  29. Pasipoularides, A., Murgo, J. P., Bird, J. J., & Craig, W. E. (1984). Fluid dynamics of aortic stenosis: Mechanisms for the presence of subvalvular pressure gradients. American Journal of Physiology, 246, H542–H550.

    PubMed  CAS  Google Scholar 

  30. Isaaz, K. (2000). Expanding the frontiers of Doppler echocardiography for the noninvasive assessment of diastolic hemodynamics. Journal of the American College of Cardiology, 36, 1950–1952.

    Article  PubMed  CAS  Google Scholar 

  31. Houlind, K., Schroeder, A. P., Egeblad, H., & Pedersen, E. M. (1999). Age-dependent changes in spatial and temporal blood velocity distribution of early left ventricular filling. Magnetic Resonance Imaging, 17, 859–868.

    Article  PubMed  CAS  Google Scholar 

  32. Cortina, C., Bermejo, J., Yotti, R., Desco, M. M., Rodríguez-Pérez, D., Antoranz, J. C., et al. (2007). Noninvasive assessment of the right ventricular filling pressure gradient. Circulation, 116, 1015–1023.

    Article  PubMed  Google Scholar 

  33. Yu, C. M., Sanderson, J. E., & Gorcsan, J., 3rd. (2010). Echocardiography, dyssynchrony, and the response to cardiac resynchronization therapy. European Heart Journal, 31, 2326–2337.

    Article  PubMed  Google Scholar 

  34. Yu, C. M., Fung, W. H., Lin, H., Zhang, Q., Sanderson, J. E., & Lau, C. P. (2003). Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. The American Journal of Cardiology, 91, 684–688.

    Article  PubMed  Google Scholar 

  35. Khaykin, Y., Exner, D., Birnie, D., Sapp, J., Aggarwal, S., & Sambelashvili, A. (2011). Adjusting the timing of left-ventricular pacing using electrocardiogram and device electrograms. Europace, 13, 1464–1470.

    Article  PubMed  Google Scholar 

  36. Taylor, D. E. M., & Wade, J. D. (1973). Pattern of blood flow within the heart: A stable system. Cardiovascular Research, 7, 14–21.

    Article  PubMed  Google Scholar 

  37. Rodevand, O., Bjornerheim, R., Edvardsen, T., Smiseth, O. A., & Ihlen, H. (1999). Diastolic flow pattern in the normal left ventricle. Journal of the American Society of Echocardiography, 12, 500–507.

    Article  PubMed  CAS  Google Scholar 

  38. Alhama, M., Bermejo, J., Yotti, R., Perez-David, E., Benito, Y., Gonzalez-Mansilla, A., et al. (2012). Quantitative assessment of intraventricular vorticity using conventional color-Doppler ultrasound. Head to head clinical validation against phase-contrast magnetic resonance imaging. Journal of the American College of Cardiology, 59(13s1), E1128–E1128.

    Article  Google Scholar 

  39. Benito, Y., Bermejo, J., Alhama, M., Yotti, R., Perez del Villar, C., Martínez-Legazpi, P., et al. (2012). Heart rate and AV delay modify left ventricular filling vortex properties. Circulation, 126, A18099.

    Google Scholar 

  40. Bird, J. J., Murgo, J. P., & Pasipoularides, A. (1982). Fluid dynamics of aortic stenosis: Subvalvular gradients without subvalvular obstruction. Circulation, 66, 835–840.

    Article  PubMed  CAS  Google Scholar 

  41. Bazilevs, Y., del Alamo, J. C., & Humphrey, J. D. (2010). From imaging to prediction: Emerging non-invasive methods in pediatric cardiology. Prog Ped Cardiol, 30, 81–89.

    Article  Google Scholar 

  42. Ebbers, T., Wigstrom, L., Bolger, A. F., Engvall, J., & Karlsson, M. (2001). Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magnetic Resonance in Medicine, 45, 872–879.

    Article  PubMed  CAS  Google Scholar 

  43. Bolger, A. F., Heiberg, E., Karlsson, M., Wigström, L., Engvall, J., Sigfridsson, A., et al. (2007). Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 9, 741–747.

    Article  PubMed  Google Scholar 

  44. Lu, J., Li, W., Zhong, Y., Luo, A., Xie, S., & Yin, L. (2012). Intuitive visualization and quantification of intraventricular convection in acute ischemic left ventricular failure during early diastole using color Doppler-based echocardiographic vector flow mapping. The International Journal of Cardiovascular Imaging, 28, 1035–1047.

    Article  PubMed  CAS  Google Scholar 

  45. Bellhouse, B. J. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovascular Research, 6, 199–210.

    Article  PubMed  CAS  Google Scholar 

  46. Kilner, P. J., Yang, G. Z., Wilkes, A. J., Mohiaddin, R. H., Firmin, D. N., & Yacoub, M. H. (2000). Asymmetric redirection of flow through the heart. Nature, 404, 759–761.

    Article  PubMed  CAS  Google Scholar 

  47. Taylor, T. W., & Yamaguchi, T. (1995). Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics. Biorheology, 32, 61–71.

    PubMed  CAS  Google Scholar 

  48. She, Z. S., & Waymire, E. C. (1995). Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Physical Review Letters, 74, 262–265.

    Article  PubMed  CAS  Google Scholar 

  49. She, Z. S., & Waymire, E. C. (1995). Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Physical Review Letters, 74, 262–265.

    Article  PubMed  CAS  Google Scholar 

  50. Watanabe, H., Sugiura, S., & Hisada, T. (2008). The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 294, H2191–H2196.

    Article  PubMed  CAS  Google Scholar 

  51. Maire, R., Ikram, S., Odemuyiwa, O., Groves, P. H., Lo, S. V., Banning, A. P., et al. (1994). Abnormalities of left ventricular flow following mitral valve replacement: A colour flow Doppler study. European Heart Journal, 15, 293–302.

    PubMed  CAS  Google Scholar 

  52. Elbeery, J. R., Lucke, J. C., Feneley, M. P., Maier, G. W., Owen, C. H., Savitt, M. A., et al. (1995). The mechanical determinants of myocardial oxygen consumption in the conscious dog. American Journal of Physiology. Heart and Circulatory Physiology, 269, H609–H620.

    CAS  Google Scholar 

  53. Glower, D. D., Spratt, J. A., Snow, N. D., Kabas, J. S., Davis, J. W., Olsen, C. O., et al. (1985). Linearity of the Frank–Starling relationship in the intact heart: The concept of preload recruitable stroke work. Circulation, 71, 994–1009.

    Article  PubMed  CAS  Google Scholar 

  54. Rushmer, R. F. (1970). Cardiovascular dynamics (3rd ed., p. 50). Philadelphia: Saunders.

    Google Scholar 

  55. Fyrenius, A., Wigström, L., Ebbers, T., Karlsson, M., Engvall, J., & Bolger, A. F. (2001). Three dimensional flow in the human left atrium. Heart, 86, 448–455.

    Article  PubMed  CAS  Google Scholar 

  56. Park, K. H., Son, J. W., Park, W. J., Lee, S. H., Kim, U., Park, J. S., et al. (2013). Characterization of the left atrial vortex flow by two-dimensional transesophageal contrast echocardiography using particle image velocimetry. Ultrasound in Medicine and Biology, 39, 62–71.

    Article  PubMed  Google Scholar 

  57. Yamamoto, K., Masuyama, T., Tanouchi, J., Naito, J., Mano, T., Kondo, H., et al. (1995). Intraventricular dispersion of early diastolic filling: A new marker of left ventricular diastolic dysfunction. American Heart Journal, 129, 291–299.

    Article  PubMed  CAS  Google Scholar 

  58. Yotti, R., Bermejo, J., Antoranz, J. C., Desco, M. M., Cortina, C., Rojo-Alvarez, J. L., et al. (2005). A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation, 112, 2921–2929.

    Article  PubMed  Google Scholar 

  59. Little, W. C. (2005). Diastolic dysfunction beyond distensibility; adverse effects of ventricular dilatation. Circulation, 112, 2888–2890.

    PubMed  Google Scholar 

  60. Abraham, W. T., & Hayes, D. L. (2003). Cardiac resynchronization therapy for heart failure. Circulation, 108, 2596–2603.

    Article  PubMed  Google Scholar 

  61. St John Sutton, M., Ghio, S., Plappert, T., Tavazzi, L., Scelsi, L., Daubert, C., et al. (2009). REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) Study Group. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation, 120, 1858–1865.

    Article  PubMed  Google Scholar 

  62. Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101, 2981–2988.

    Article  PubMed  CAS  Google Scholar 

  63. Glower, D. D., Tuttle, R. H., Shaw, L. K., Orozco, R. E., & Rankin, J. S. (2005). Patient survival characteristics after routine mitral valve repair for ischemic mitral regurgitation. The Journal of Thoracic and Cardiovascular Surgery, 129, 860–868.

    Article  PubMed  Google Scholar 

  64. Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  65. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.

    Article  PubMed  CAS  Google Scholar 

  66. Weber, M., & Schübeler, D. (2007). Genomic patterns of DNA methylation: Targets and function of an epigenetic mark. Current Opinion in Cell Biology, 19, 273–280.

    Article  PubMed  CAS  Google Scholar 

  67. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  68. Chang, C. P., & Bruneau, B. G. (2012). Epigenetics and cardiovascular development. Annual Review of Physiology, 74, 41–68.

    Article  PubMed  CAS  Google Scholar 

  69. Rusk N. (2012). Epigenetics: Writing the histone code. Nature Methods, 9, 777.

    Google Scholar 

  70. Lorenzen, J. M., Martino, F., & Thum, T. (2012). Epigenetic modifications in cardiovascular disease. Basic Research in Cardiology, 107, 245. doi:10.1007/s00395-012-0245-9.

    Article  PubMed  Google Scholar 

  71. Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M. D., & Ruden, D. M. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics, 33, 70–74.

    Article  PubMed  CAS  Google Scholar 

  72. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.

    Article  PubMed  CAS  Google Scholar 

  73. Réale, D., McAdam, A. G., Boutin, S., & Berteaux, D. (2003). Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond B, 270, 591–596.

    Article  Google Scholar 

  74. Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: Probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–469.

    PubMed  Google Scholar 

  75. Dahl, C., & Guldberg, P. (2003). DNA methylation analysis techniques. Biogerontology, 4, 233–250.

    Article  PubMed  CAS  Google Scholar 

  76. Koga, Y., Pelizzola, M., Cheng, E., Krauthammer, M., Sznol, M., Ariyan, S., et al. (2009). Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Research, 19, 1462–1470.

    Article  PubMed  CAS  Google Scholar 

  77. Lee, E. K. (2007). Large-scale optimization-based classification models in medicine and biology. Annals of Biomedical Engineering, 35, 1095–1109.

    Article  PubMed  Google Scholar 

  78. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.

    Article  CAS  Google Scholar 

  79. Dzau, V. J., Austin, M. J., Brown, P., Cowley, A., Housman, D., Mulligan, R., et al. (1999). Revolution and renaissance. Physiological Genomics, 1, 1–2.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research support, for work in the author’s Laboratory surveyed in this Review, was provided by the National Heart, Lung, and Blood Institute [grant number R01-HL-050446]; the National Science Foundation [grant number CDR 8622201]; and the North Carolina Supercomputing Center and Cray Research. I thank the co-Editor-in-Chief and the reviewers for their constructive remarks. The final product has benefited greatly from Dr. Hall’s interest and personal editorial attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ares Pasipoularides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasipoularides, A. Evaluation of Right and Left Ventricular Diastolic Filling. J. of Cardiovasc. Trans. Res. 6, 623–639 (2013). https://doi.org/10.1007/s12265-013-9461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9461-4

Keywords

Navigation