Abstract
Cardiometabolic diseases encompass simple monogenic enzyme deficiencies with well-established pathogenesis and clinical outcomes to complex polygenic diseases such as the cardiometabolic syndrome. The limited availability of relevant human cell types such as cardiomyocytes has hampered our ability to adequately model and study pathways or drugs relevant to these diseases in the heart. The recent discovery of induced pluripotent stem (iPS) cell technology now offers a powerful opportunity to establish translational platforms for cardiac disease modeling, drug discovery, and pre-clinical testing. In this article, we discuss the excitement and challenges of modeling cardiometabolic diseases using iPS cell and their potential to revolutionize translational research.
Similar content being viewed by others
References
Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.
Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305. doi:10.1038/nature10761.
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi:10.1016/j.cell.2007.11.019.
Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37(12), 1595–1607.
Lakka, H. M., Laaksonen, D. E., Lakka, T. A., Niskanen, L. K., Kumpusalo, E., Tuomilehto, J., et al. (2002). The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA: The Journal of the American Medical Association, 288(21), 2709–2716.
Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England Journal of Medicine, 339(4), 229–234. doi:10.1056/NEJM199807233390404.
Malik, S., Wong, N. D., Franklin, S. S., Kamath, T. V., L’Italien, G. J., Pio, J. R., et al. (2004). Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation, 110(10), 1245–1250. doi:10.1161/01.CIR.0000140677.20606.0E.
Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886. doi:10.1016/j.cell.2008.07.041.
Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., et al. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15768–15773. doi:10.1073/pnas.0906894106.
Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4), 661–680. doi:10.1016/j.cell.2008.02.008.
Meyer, J. S., Shearer, R. L., Capowski, E. E., Wright, L. S., Wallace, K. A., McMillan, E. L., et al. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16698–16703. doi:10.1073/pnas.0905245106.
Hu, B. Y., Weick, J. P., Yu, J., Ma, L. X., Zhang, X. Q., Thomson, J. A., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4335–4340. doi:10.1073/pnas.0910012107.
Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290. doi:10.1038/nature09342.
Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855. doi:10.1038/nbt.1667.
Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315. doi:10.1038/nbt1383.
Nguyen, H. N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., et al. (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3), 267–280. doi:10.1016/j.stem.2011.01.013.
Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–225. doi:10.1038/nature09915.
Cao, N., Liu, Z., Chen, Z., Wang, J., Chen, T., Zhao, X., et al. (2012). Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Research, 22(1), 219–236. doi:10.1038/cr.2011.195.
Beqqali, A., Kloots, J., Ward-van Oostwaard, D., Mummery, C., & Passier, R. (2006). Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells, 24(8), 1956–1967. doi:10.1634/stemcells.2006-0054.
Davis, R. P., van den Berg, C. W., Casini, S., Braam, S. R., & Mummery, C. L. (2011). Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends in Molecular Medicine, 17(9), 475–484. doi:10.1016/j.molmed.2011.05.001.
Itzhaki, I., Rapoport, S., Huber, I., Mizrahi, I., Zwi-Dantsis, L., Arbel, G., et al. (2011). Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PloS One, 6(4), e18037. doi:10.1371/journal.pone.0018037.
Qiu, C., Olivier, E. N., Velho, M., & Bouhassira, E. E. (2008). Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood, 111(4), 2400–2408. doi:10.1182/blood-2007-07-102087.
Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26(4), 443–452. doi:10.1038/nbt1393.
Park, T. S., Zimmerlin, L., & Zambidis, E. T. (2012). Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells. Cytometry Part A: The Journal of the International Society for Analytical Cytology. doi:10.1002/cyto.a.22090.
Li, Z., Hu, S., Ghosh, Z., Han, Z., & Wu, J. C. (2011). Functional characterization and expression profiling of human induced pluripotent stem cell- and embryonic stem cell-derived endothelial cells. Stem Cells and Development, 20(10), 1701–1710. doi:10.1089/scd.2010.0426.
Drukker, M., Tang, C., Ardehali, R., Rinkevich, Y., Seita, J., Lee, A. S., et al. (2012). Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nature Biotechnology, 30(6), 531–542. doi:10.1038/nbt.2239.
Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221. doi:10.1126/science.1158799.
Keller, G. (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes & Development, 19(10), 1129–1155. doi:10.1101/gad.1303605.
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. doi:10.1038/nbt.1529.
Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977. doi:10.1016/j.cell.2009.02.013.
Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6(2), 88–95.
Martin, G. R., & Evans, M. J. (1975). Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proceedings of the National Academy of Sciences of the United States of America, 72(4), 1441–1445.
Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810. doi:10.1146/annurev.cellbio.20.010403.113126.
Schier, A. F. (2003). Nodal signaling in vertebrate development. Annual Review of Cell and Developmental Biology, 19, 589–621. doi:10.1146/annurev.cellbio.19.041603.094522.
Niswander, L., & Martin, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114(3), 755–768.
Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28. doi:10.1016/j.stem.2011.12.013.
Willems, E., Bushway, P. J., & Mercola, M. (2009). Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatric Cardiology, 30(5), 635–642. doi:10.1007/s00246-009-9409-2.
Huber, I., Itzhaki, I., Caspi, O., Arbel, G., Tzukerman, M., Gepstein, A., et al. (2007). Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 21(10), 2551–2563. doi:10.1096/fj.05-5711com.
Kita-Matsuo, H., Barcova, M., Prigozhina, N., Salomonis, N., Wei, K., Jacot, J. G., et al. (2009). Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PloS One, 4(4), e5046. doi:10.1371/journal.pone.0005046.
Sachdev, B., Takenaka, T., Teraguchi, H., Tei, C., Lee, P., McKenna, W. J., et al. (2002). Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation, 105(12), 1407–1411.
Arad, M., Maron, B. J., Gorham, J. M., Johnson, W. H., Jr., Saul, J. P., Perez-Atayde, A. R., et al. (2005). Glycogen storage diseases presenting as hypertrophic cardiomyopathy. The New England Journal of Medicine, 352(4), 362–372. doi:10.1056/NEJMoa033349.
Van den Hout, H., Reuser, A. J., Vulto, A. G., Loonen, M. C., Cromme-Dijkhuis, A., & Van der Ploeg, A. T. (2000). Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet, 356(9227), 397–398.
Nakao, S., Takenaka, T., Maeda, M., Kodama, C., Tanaka, A., Tahara, M., et al. (1995). An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. The New England Journal of Medicine, 333(5), 288–293. doi:10.1056/NEJM199508033330504.
Danon, M. J., Oh, S. J., DiMauro, S., Manaligod, J. R., Eastwood, A., Naidu, S., et al. (1981). Lysosomal glycogen storage disease with normal acid maltase. Neurology, 31(1), 51–57.
Nishino, I., Fu, J., Tanji, K., Yamada, T., Shimojo, S., Koori, T., et al. (2000). Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature, 406(6798), 906–910. doi:10.1038/35022604.
Rashid, S. T., Corbineau, S., Hannan, N., Marciniak, S. J., Miranda, E., Alexander, G., et al. (2010). Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. The Journal of Clinical Investigation, 120(9), 3127–3136. doi:10.1172/JCI43122.
Bernier, A. V., Correia, C. E., Haller, M. J., Theriaque, D. W., Shuster, J. J., & Weinstein, D. A. (2009). Vascular dysfunction in glycogen storage disease type I. The Journal of Pediatrics, 154(4), 588–591. doi:10.1016/j.jpeds.2008.10.048.
Lee, P. J., Celermajer, D. S., Robinson, J., McCarthy, S. N., Betteridge, D. J., & Leonard, J. V. (1994). Hyperlipidaemia does not impair vascular endothelial function in glycogen storage disease type 1a. Atherosclerosis, 110(1), 95–100.
Kawagoe, S., Higuchi, T., Meng, X. L., Shimada, Y., Shimizu, H., Hirayama, R., et al. (2011). Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells. Molecular Genetics and Metabolism, 104(1–2), 123–128. doi:10.1016/j.ymgme.2011.05.020.
Luptak, I., Shen, M., He, H., Hirshman, M. F., Musi, N., Goodyear, L. J., et al. (2007). Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. The Journal of Clinical Investigation, 117(5), 1432–1439. doi:10.1172/JCI30658.
Arad, M., Seidman, C. E., & Seidman, J. G. (2007). AMP-activated protein kinase in the heart: role during health and disease. Circulation Research, 100(4), 474–488. doi:10.1161/01.RES.0000258446.23525.37.
Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15–25. doi:10.1016/j.cmet.2004.12.003.
Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T. O., & Zechner, R. (2009). Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. American Journal of Physiology, Endocrinology and Metabolism, 297(2), E289–E296. doi:10.1152/ajpendo.00099.2009.
Chanarin, I., Patel, A., Slavin, G., Wills, E. J., Andrews, T. M., & Stewart, G. (1975). Neutral-lipid storage disease: a new disorder of lipid metabolism. British Medical Journal, 1(5957), 553–555.
Dorfman, M. L., Hershko, C., Eisenberg, S., & Sagher, F. (1974). Ichthyosiform dermatosis with systemic lipidosis. Archives of Dermatology, 110(2), 261–266.
Igal, R. A., Rhoads, J. M., & Coleman, R. A. (1997). Neutral lipid storage disease with fatty liver and cholestasis. Journal of Pediatric Gastroenterology and Nutrition, 25(5), 541–547.
Lefevre, C., Jobard, F., Caux, F., Bouadjar, B., Karaduman, A., Heilig, R., et al. (2001). Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. American Journal of Human Genetics, 69(5), 1002–1012. doi:10.1086/324121.
Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., et al. (2006). Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metabolism, 3(5), 309–319. doi:10.1016/j.cmet.2006.03.005.
Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306(5700), 1383–1386. doi:10.1126/science.1100747.
Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H., & Sul, H. S. (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. The Journal of Biological Chemistry, 279(45), 47066–47075. doi:10.1074/jbc.M403855200.
Jenkins, C. M., Mancuso, D. J., Yan, W., Sims, H. F., Gibson, B., & Gross, R. W. (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. The Journal of Biological Chemistry, 279(47), 48968–48975. doi:10.1074/jbc.M407841200.
Kershaw, E. E., Hamm, J. K., Verhagen, L. A., Peroni, O., Katic, M., & Flier, J. S. (2006). Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes, 55(1), 148–157.
Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., et al. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science, 312(5774), 734–737. doi:10.1126/science.1123965.
Hirano, K., Ikeda, Y., Zaima, N., Sakata, Y., & Matsumiya, G. (2008). Triglyceride deposit cardiomyovasculopathy. The New England Journal of Medicine, 359(22), 2396–2398. doi:10.1056/NEJMc0805305.
Fischer, J., Lefevre, C., Morava, E., Mussini, J. M., Laforet, P., Negre-Salvayre, A., et al. (2007). The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nature Genetics, 39(1), 28–30. doi:10.1038/ng1951.
Lake, A. C., Sun, Y., Li, J. L., Kim, J. E., Johnson, J. W., Li, D., et al. (2005). Expression, regulation, and triglyceride hydrolase activity of adiponutrin family members. Journal of Lipid Research, 46(11), 2477–2487. doi:10.1194/jlr.M500290-JLR200.
Pinent, M., Hackl, H., Burkard, T. R., Prokesch, A., Papak, C., Scheideler, M., et al. (2008). Differential transcriptional modulation of biological processes in adipocyte triglyceride lipase and hormone-sensitive lipase-deficient mice. Genomics, 92(1), 26–32. doi:10.1016/j.ygeno.2008.03.010.
Kobayashi, K., Inoguchi, T., Maeda, Y., Nakashima, N., Kuwano, A., Eto, E., et al. (2008). The lack of the C-terminal domain of adipose triglyceride lipase causes neutral lipid storage disease through impaired interactions with lipid droplets. The Journal of Clinical Endocrinology and Metabolism, 93(7), 2877–2884. doi:10.1210/jc.2007-2247.
Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923. doi:10.1126/science.1152092.
Yusa, K., Rashid, S. T., Strick-Marchand, H., Varela, I., Liu, P. Q., Paschon, D. E., et al. (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478(7369), 391–394. doi:10.1038/nature10424.
Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., et al. (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 27(9), 851–857. doi:10.1038/nbt.1562.
Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., et al. (2007). Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 25(11), 1298–1306. doi:10.1038/nbt1353.
Acknowledgments
The authors would like to thank Ms. Karolina Plonowska for her editorial assistance. This work was funded by NIH Officer of the Director and NIH/NHLBI to S.M.W. We apologize for our inability to cite many excellent studies in this area due to space constraints.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Nakamura, K., Hirano, Ki. & Wu, S.M. iPS Cell Modeling of Cardiometabolic Diseases. J. of Cardiovasc. Trans. Res. 6, 46–53 (2013). https://doi.org/10.1007/s12265-012-9413-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12265-012-9413-4